trace – Including the error bar in the graph

I have a graph of a sample that was measured 3 times in the same condition.

How can I plot the adjusted mean values ​​of the graph with the error bar (standard deviation) to 0.1, 0.2, 0.3, 0.4 and 0.5 percentage of tension?

Graph adjusted from the 3 measurement cycle.

The 3 measures:

Show[Plot[{model[x] /. sol2MACD60A10x1cm,
model[x] /. sol2MACD60B10x1cm, model[x] /. sol2MACD60C10x1cm}, {x,
0, 0.5}, PlotLegends -> {"Cycle 1", "Cycle 2", "Cycle 3"}],
AxesLabel -> {"Strain", "Resistance"},
PlotLabel -> "Deformation resistance graph (hysteresis)"]

enter the description of the image here

I managed to find the average graph adjusted, but I would need help to plot it with the error bar from 0.1 to 0.5.

The adjusted average graph:

    Show[Plot[{Try1}, {x, 0, 0.5}, PlotLegends -> {"Mean fit graph"}],
AxesLabel -> {"Strain", "R"},
PlotLabel -> "Deformation resistance graph (hysteresis)"]

enter the description of the image here

I calculated the SD by 0.1 to 0.5 and then plotted on the adjusted average graph.

I appreciate some advice on this. Thank you.

        0.1
In[432]: = SD10x1dot1 =
Join[{NewCD60A10x1cm[[1180]], NewCD60B10x1cm[[1180]],
NewCD60C10x1cm[[1180]]}]Outside[432]= {{0.101709, 0.617623}, {0.100898, 0.516713}, {0.100705, 0.627334}}

In[478]: = Errordot1 = StandardDeviation[SD10x1dot1]

    Outside[478]= {0.000532548, 0.0612569}

0.2
In[476]: = SD10x1dot2 =
Join[{NewCD60A10x1cm[[2400]], NewCD60B10x1cm[[2400]],
NewCD60C10x1cm[[2400]]}]Outside[476]= {{0.206773, 0.841482}, {0.205343, 0.787624}, {0.205157, 0.893691}}

In[492]: = Errordot2 = StandardDeviation[SD10x1dot2]

    Outside[492]= {0.00127734, 0.0550183}



0.3
In[490]: = SD10x1dot3 =
Join[{NewCD60A10x1cm[[3550]], NewCD60B10x1cm[[3550]],
NewCD60C10x1cm[[3550]]}]Outside[490]= {{0.305896, 1.00869}, {0.303791, 0.927175}, {0.30359, 1.03194}}

In[491]: = Errordot3 = StandardDeviation[SD10x1dot3]

    Outside[491]= {0.00127734, 0.0550183}

0.4
In[490]: = SD10x1dot4 =
Join[{NewCD60A10x1cm[[3550]], NewCD60B10x1cm[[3550]],
NewCD60C10x1cm[[3550]]}]Outside[490]= {{0.305896, 1.00869}, {0.303791, 0.927175}, {0.30359, 1.03194}}

In[491]: = Errordot4 = StandardDeviation[SD10x1dot3]

    Outside[491]= {0.00127734, 0.0550183}

0.4

In[501]: = SD10x1dot4 =
Join[{NewCD60A10x1cm[[4650]], NewCD60B10x1cm[[4650]],
NewCD60C10x1cm[[4650]]}]Outside[501]= {{0.400781, 1.06205}, {0.397858, 0.932105}, {0.397774, 1.0753}}

In[502]: = Errordot4 = StandardDeviation[SD10x1dot4]

    Outside[502]= {0.00171254, 0.0791255}

0.5

In[509]: = SD10x1dot5 =
Join[{NewCD60A10x1cm[[5850]], NewCD60B10x1cm[[5850]],
NewCD60C10x1cm[[5850]]}]Outside[509]= {{0.504179, 1.09402}, {0.500346, 0.984332}, {0.500377, 1.17127}}

In[510]: = Errordot5 = StandardDeviation[SD10x1dot5]

    Outside[510]= {0.00171254, 0.0791255}

In[535]: = total error = {Errordot1, Errordot2, Errordot3, Errordot4,
Errordot5}

Outside[535]= {{0.000532548, 0.0612569}, {0.00127734,
0.0550183}, {0.00127734, 0.0550183}, {0.00171254,
0.0791255}, {0.00171254, 0.0791255}}