Consider the following recurrence relationship.

begin{eqnarray}

T(n) &=&

begin{cases}

Tleft(displaystylefrac{n}{2}right) + 1, &n mbox{is even number}& \

2Tleft(displaystylefrac{n-1}{2}right), &n mbox{is odd number}&

end{cases} nonumber \

T(1) &=& 1

end{eqnarray}

How to find infinite set X, which satisfies T(n)=Ω(n) when n∈X ?

I want to know the example of X and the process how to get it.