My code is not putting. Also, I don't know how to copy paste this code from my notebook. Is there an easier way to paste here? I am drawing a graph for the different values â€‹â€‹of R. I also have to draw for the different values â€‹â€‹of epsilon ……… can we predict the values â€‹â€‹given in block? ………………………………………….. ………………………………………….. ………………………………………….. ………………………………………….. ………………………………………….. ………………………………………….. ………………………………………….. ………………………………………….. …………………………………….. friendly guide

```
eqn1=(1+1/(Beta))((1+(Epsilon)-(Epsilon) (Theta)(y)) f''''(y)-(Epsilon) f''(y) (Theta)''(y)-2 (Epsilon) f'''(y) (Theta)'(y))+(Alpha) (y f'''(y)+3 f''(y))+R (f(y) f'''(y)-f'(y) f''(y))- M^2 f''(y)==0;
eqn2=(1+NN)(Theta)''(y)+Pr ((Alpha)(m (Theta)(y)+y (Theta)'(y))+ R(f(y) (Theta)'(y)-m f'(y) (Theta)(y)))==0;
bcs1={f(-1)==A,f'(-1)==0, f(1)==1, f'(1)==0 };
bcs2={(Theta)(-1)==1, (Theta)(1)==0};
f1=Block ({(Beta)=0.5, (Epsilon)=1.5, Pr=1, M=1,NN=2,R=-5,m=1, (Alpha)=0.5,A=-0.2},
First(NDSolve({eqn1, eqn2, bcs1, bcs2},
{f((Eta)),f'((Eta)), f''((Eta)),f'''((Eta)), (Theta)((Eta)),
(Theta)'((Eta))}, {(Eta),-1,1},
Method->{"Shooting", "StartingInitialConditions" ->
{{f(-1)==A,f(-1)==0,f'(-1)==0, f''(-1)==0,f'''(-1)==0,(Theta)(-1)==1,
(Theta)(-1)==0,(Theta)'(-1)==0}}}
))
);
TableForm(
Table({(Eta),{f((Eta))/.f1}, {f'((Eta))/.f1}, {f''((Eta))/.f1},{(Theta)
((Eta))/.f1},{(Theta)'((Eta))/.f1}},{(Eta),-1,1,0.2}), TableAlignments->
{Center,Center},
TableHeadings->{None,{"(Eta)","f((Eta))","f'((Eta))","f''((Eta))","
(Theta)((Eta))","(Theta)'((Eta))"}},TableSpacing->{1,5})
f2=Block ({(Beta)=0.5, (Epsilon)=1.5, Pr=1, M=1,NN=2,R=-2.5,m=1,
(Alpha)=0.5,A=-0.2},
First(NDSolve({eqn1, eqn2, bcs1, bcs2},
{f((Eta)),f'((Eta)), f''((Eta)),f'''((Eta)), (Theta)((Eta)),
(Theta)'((Eta))}, {(Eta),-1,1},
Method->{"Shooting", "StartingInitialConditions" ->
{{f(-1)==A,f(-1)==0,f'(-1)==0, f''(-1)==0,f'''(-1)==0,(Theta)(-1)==1,
(Theta)(-1)==0,(Theta)'(-1)==0}}}
))
);
TableForm(
Table({(Eta),{f((Eta))/.f2}, {f'((Eta))/.f2}, {f''((Eta))/.f2},{
(Theta)((Eta))/.f2},{(Theta)'((Eta))/.f2}},{(Eta),-1,1,0.2}),
TableAlignments->{Center,Center},
TableHeadings->{None,{"(Eta)","f((Eta))","f'((Eta))","f''((Eta))","
(Theta)((Eta))","(Theta)'((Eta))"}},TableSpacing->{1,5})
f3=Block ({(Beta)=0.5, (Epsilon)=1.5, Pr=1, M=1,NN=2,R=0,m=1,
(Alpha)=0.5,A=-0.2},
First(NDSolve({eqn1, eqn2, bcs1, bcs2},
{f((Eta)),f'((Eta)), f''((Eta)),f'''((Eta)), (Theta)((Eta)),
(Theta)'((Eta))}, {(Eta),-1,1},
Method->{"Shooting", "StartingInitialConditions" ->
{{f(-1)==A,f(-1)==0,f'(-1)==0, f''(-1)==0,f'''(-1)==0,(Theta)(-1)==1,
(Theta)(-1)==0,(Theta)'(-1)==0}}}
))
);
TableForm(
Table({(Eta),{f((Eta))/.f3}, {f'((Eta))/.f3}, {f''((Eta))/.f3},{
(Theta)
((Eta))/.f3},{(Theta)'((Eta))/.f3}},{(Eta),-1,1,0.2}), TableAlignments->
{Center,Center},
TableHeadings->{None,{"(Eta)","f((Eta))","f'((Eta))","f''((Eta))","
(Theta)((Eta))","(Theta)'((Eta))"}},TableSpacing->{1,5})
f4=Block ({(Beta)=0.5, (Epsilon)=1.5, Pr=1, M=1,NN=2,R=2.5,m=1,
(Alpha)=0.5,A=-0.2},
First(NDSolve({eqn1, eqn2, bcs1, bcs2},
{f((Eta)),f'((Eta)), f''((Eta)),f'''((Eta)), (Theta)((Eta)),
(Theta)'((Eta))}, {(Eta),-1,1},
Method->{"Shooting", "StartingInitialConditions" ->
{{f(-1)==A,f(-1)==0,f'(-1)==0, f''(-1)==0,f'''(-1)==0,(Theta)(-1)==1,
(Theta)(-1)==0,(Theta)'(-1)==0}}}
))
);
TableForm(
Table({(Eta),{f((Eta))/.f4}, {f'((Eta))/.f4}, {f''((Eta))/.f4},{(Theta)
((Eta))/.f4},{(Theta)'((Eta))/.f4}},{(Eta),-1,1,0.2}), TableAlignments->
{Center,Center},
TableHeadings->{None,{"(Eta)","f((Eta))","f'((Eta))","f''((Eta))","
(Theta)((Eta))","(Theta)'((Eta))"}},TableSpacing->{1,5})
f5=Block ({(Beta)=0.5, (Epsilon)=1.5, Pr=1, M=1,NN=2,R=5,m=1,
(Alpha)=0.5,A=-0.2},
First(NDSolve({eqn1, eqn2, bcs1, bcs2},
{f((Eta)),f'((Eta)), f''((Eta)),f'''((Eta)), (Theta)((Eta)),
(Theta)'((Eta))}, {(Eta),-1,1},
Method->{"Shooting", "StartingInitialConditions" ->
{{f(-1)==A,f(-1)==0,f'(-1)==0, f''(-1)==0,f'''(-1)==0,(Theta)(-1)==1,
(Theta)(-1)==0,(Theta)'(-1)==0}}}
))
);
TableForm(
Table({(Eta),{f((Eta))/.f5}, {f'((Eta))/.f5}, {f''((Eta))/.f5},{(Theta)
((Eta))/.f5},{(Theta)'((Eta))/.f5}},{(Eta),-1,1,0.2}), TableAlignments->
{Center,Center},
TableHeadings->{None,{"(Eta)","f((Eta))","f'((Eta))","f''((Eta))","
(Theta)((Eta))","(Theta)'((Eta))"}},TableSpacing->{1,5})
Needs("PlotLegends`")
Plot(Evaluate({{f((Eta))}/.f1,f((Eta))/.f2,f((Eta))/.f3,f((Eta))/.f4,f(
(Eta))/.f5}),
{(Eta),-1,1},ImageSize->500,PlotRange->All,
PlotStyle->{{Dotted,Black},{DotDashed,Red},{Dashed,Green},{Blue}},Axes->
{False,False},
Frame->True,FrameLabel->{Style("(Eta)",Italic,Black),Style("f(
(Eta))",Italic,Black)},
PlotLegend->{"R=-5","R=-2.5", "R=0","R=2.5","R=5"},LegendPosition->
{-0.1,-0.0},
LegendShadow->{0,0},LegendBackground->White,LegendSize->{0.3,0.4})
Plot(Evaluate({{f'((Eta))}/.f1,f'((Eta))/.f2,f'((Eta))/.f3,f'(
(Eta))/.f4,f'((Eta))/.f5}),
{(Eta),-1,1},ImageSize->500,PlotRange->All,
PlotStyle->{{Dotted,Black},{DotDashed,Black},{Dashed,Brown},{Gray}},Axes->
{False,False},
Frame->True,FrameLabel->{Style("(Eta)",Italic,Black),Style("f'(
(Eta))",Italic,Black)},
PlotLegend->{"R=-5","R=-2.5", "R=0","R=2.5","R=5"},LegendPosition->
{-0.1,-0.0},
LegendShadow->{0,0},LegendBackground->White,LegendSize->{0.3,0.4})
Plot(Evaluate({{(Theta)((Eta))}/.f1,(Theta)((Eta))/.f2,(Theta)(
(Eta))/.f3,(Theta)((Eta))/.f4,(Theta)((Eta))/.f5}),
{(Eta),-1,1},ImageSize->500,PlotRange->All,
PlotStyle->{{Dotted,Black},{DotDashed,Black},{Dashed,Brown},{Gray}},Axes->
{False,False},
Frame->True,FrameLabel->{Style("(Eta)",Italic,Black),Style("(Theta)(
(Eta))",Italic,Black)},
PlotLegend->{"R=-5","R=-2.5", "R=0","R=2.5","R=5"},LegendPosition->
{-0.1,-0.0},
LegendShadow->{0,0},LegendBackground->White,LegendSize->{0.3,0.4})
```

The previous code is giving a message that my dependent variables are more than equations. here is the copied message

NDSolve :: underdet