I have a very complicated output from Mathematica – which may run to several pages – and I want to keep only some of the terms.
The expression I am working with is a double summation. It results in (several pages) of output, but many of the terms include variables raised to a power where the power is a function of $n$. For example:
begin{equation}
a^4b^2(2a^3+a^7-4abc(6a-9)+a^{2n+6}left(8+9bc-6a^{2n-8}right))
end{equation}
In my problem, $n$ is very large, such that I want to be able to ignore any individual terms involving this power because they become negligible. The expression above would become:
begin{equation}
a^4 b^2 (2a^3 + a^7 - 4abc(6a-9) )
end{equation}
Any assistance gratefully received – I have about 5 pages of output to sift through otherwise!
I have looked at this post
enter link description here
and have tried the delete with function suggested, but
it removes all of the terms in the above example.
Here is a small sample of the Mathematica Output I am trying to simplify:
((1 - a)^2 (1 - b)^2 (1 -
c)^2 (a^(4 + 2 n) (-1 + b^2) (b - c)^2 (-1 + b c) (-1 + c^2) +
a^(6 + 2 n) b (-1 + b^2) (b - c)^2 c (-1 + b c) (-1 + c^2) -
a^(5 + 2 n) (-1 + b^2) (b - c)^2 (-1 + c^2) (-c + b^2 c +
b (-1 + c^2)) +
2 a^(2 + n)
b c (-b c^(5 + n) + b^3 c^(5 + n) + b^(5 + n) c (-1 + c^2) +
c^(2 + n) (-1 + c^2) - b^4 c^(2 + n) (-1 + c^2) +
b^(2 + n) (-1 + c^4) - b^(4 + n) (-1 + c^4)) +
2 a^(6 + n)
b c (-b c^(1 + n) + b^3 c^(1 + n) + b^(1 + n) c (-1 + c^2) -
c^(2 + n) (-1 + c^2) + b^4 c^(2 + n) (-1 + c^2) -
b^(2 + n) (-1 + c^4) + b^(4 + n) (-1 + c^4)) +
2 a^(5 +
n) (-c^(3 + n) - b^2 c^(3 + n) + b^4 c^(3 + n) +
b^6 c^(3 + n) + b^(3 + n) (-1 + c^2) (1 + c^2)^2 +
b^(6 + n) c (-1 + c^4) - b c^(2 + n) (-1 + c^4) +
b^5 c^(2 + n) (-1 + c^4) + b^(2 + n) (c - c^5)) -
2 a^(3 +
n) (c^(5 + n) + b^2 c^(5 + n) - b^4 c^(5 + n) - b^6 c^(5 + n) -
b^(5 + n) (-1 + c^2) (1 + c^2)^2 + b^(6 + n) c (-1 + c^4) -
b c^(2 + n) (-1 + c^4) + b^5 c^(2 + n) (-1 + c^4) +
b^(2 + n) (c - c^5)) +
a^3 (-b^(5 + 2 n) (-1 + c^2) (1 + c^2)^2 -
2 b^3 (-1 + (a b)^n) (-1 + c^2) (1 + c^2)^2 +
b^(4 + 2 n) c (-1 + c^4) + b^(6 + 2 n) c (-1 + c^4) -
b c^2 (1 + c^2) (-2 + c^2 + c^(2 + 2 n)) +
b^5 (1 + c^2) (1 - 2 c^2 + c^(4 + 2 n)) +
c^3 (-2 + c^2 + c^(2 + 2 n) + 2 (a c)^n) -
b^6 c (1 + c^(4 + 2 n) + 2 c^2 (-1 + (a c)^n)) +
b^2 c (2 - c^4 + c^(4 + 2 n) + 2 c^2 (-1 + (a c)^n)) -
b^4 c (-1 + 2 c^4 + c^(4 + 2 n) + 2 c^2 (-1 + (a c)^n))) +
a^5 (c^3 - c^(5 + 2 n) + 2 c^5 (a c)^n - 2 b^6 c^5 (a c)^n +
b^(4 + 2 n) c (-1 + c^2) - 2 b^(2 + n) c^(3 + n) (-1 + c^2) +
2 b^(6 + n) c^(3 + n) (-1 + c^2) + b^(5 + 2 n) (-1 + c^4) -
2 b^(3 + n) c^(2 + n) (-1 + c^4) +
2 b^(5 + n) c^(2 + n) (-1 + c^4) +
b^(6 + 2 n) (c + c^3 - 2 c^5) +
b c^2 (-1 + c^2) (1 + c^(2 + 2 n)) +
b^3 (1 + c^2) (1 - 2 c^2 + c^(4 + 2 n)) -
2 b^5 (-(a b)^n - (1 + (a b)^n) c^2 + (a b)^n c^4 + (a b)^
n c^6 + c^(6 + 2 n)) +
b^4 (c - 2 c^3 + c^(5 + 2 n) - 2 c^5 (a c)^n) +
b^2 c (-1 - c^2 + 2 c^4 (1 + (a c)^n))) +
a^6 b c (2 b^(4 + n) c^(2 + n) + 2 b^(2 + n) c^(4 + n) -
2 (b c)^(4 + n) - b^(4 + 2 n) (-1 + c^2) +
b^(5 + 2 n) c (-1 + c^2) - 2 b^5 (a b)^n c (-1 + c^2) +
c^2 (-1 + c^(2 + 2 n)) +
b^3 c (-1 + c^(4 + 2 n) - 2 c^4 (a c)^n) -
b c (-2 + c^2 + c^(4 + 2 n) - 2 c^4 (a c)^n) -
b^2 (1 + c^(4 + 2 n) + 2 c^2 (-1 + (b c)^n))) +
a^4 (c^2 - 2 c^4 + 2 b^(6 + n) c^(2 + n) +
2 b^(5 + n) c^(3 + n) + 2 b^(3 + n) c^(5 + n) +
2 b^(2 + n) c^(6 + n) + c^(4 + 2 n) +
b^(5 + 2 n) c^3 (-1 + c^2) + b^(4 + 2 n) (1 + c^2 - 2 c^4) +
b^(6 + 2 n) c^2 (-1 + c^4) + b c (-2 + c^2 + c^4) -
2 b^4 (1 + c^2 - 3 c^4 + c^(4 + 2 n)) +
b^6 c^2 (-1 + c^(4 + 2 n) - 2 c^4 (b c)^n) +
b^5 (c - 2 c^3 + c^(5 + 2 n) - 2 c^5 (b c)^n) -
b^3 c (-1 + 2 c^4 + c^(4 + 2 n) + 2 c^2 (-1 + (b c)^n)) -
b^2 (-1 + 2 c^4 + c^6 - c^(4 + 2 n) + c^(6 + 2 n) +
2 c^2 (-1 + (b c)^n))) -
a^2 (2 b^(6 + n) c^(2 + n) + 2 b^(5 + n) c^(3 + n) +
2 b^(3 + n) c^(5 + n) + 2 b^(2 + n) c^(6 + n) +
b^(5 + 2 n) (c - c^3) - b^(4 + 2 n) (-1 + c^4) +
b^(6 + 2 n) c^2 (-2 + c^2 + c^4) + c^4 (-1 + c^(2 n)) +
b c^3 (-2 + c^2 + c^(2 + 2 n)) -
2 b^2 c^2 (-3 + (a b)^n - (-1 + (a b)^n) c^2 + c^4 + c^(
4 + 2 n) + (a c)^n + (b c)^n) +
b^6 c^2 (-2 + c^2 + c^(4 + 2 n) - 2 c^4 (b c)^n) +
b^4 (-1 + 2 c^4 + c^6 - c^(4 + 2 n) + c^(6 + 2 n) +
2 c^2 (-1 + (a c)^n)) -
b^3 c (2 - c^4 + c^(4 + 2 n) + 2 c^2 (-1 + (b c)^n)) +
b^5 (c + c^3 - 2 c^5 (1 + (b c)^n))) -
b^2 c^2 (-b^(2 + 2 n) (-1 + c^2) + b^(3 + 2 n) c (-1 + c^2) +
c^2 (-1 + c^(2 n)) - b^2 (1 - 2 c^2 + c^(2 + 2 n)) +
b^3 c (-1 + c^(2 + 2 n) + 2 (b c)^n - 2 c^2 (b c)^n) +
b c (2 - c^(2 + 2 n) - 2 (b c)^n + c^2 (-1 + 2 (b c)^n))) +
a b c (2 b^(2 + n) c^(5 + n) - 2 b^(4 + n) c^(5 + n) +
b^(5 + 2 n) c^2 (-1 + c^2) -
2 b^(5 + n) c^(2 + n) (-1 + c^2) + b^(4 + 2 n) c (-1 + c^4) +
b^3 (-2 + c^2 + c^4) - b^(3 + 2 n) (-2 + c^2 + c^4) +
2 c^3 (-1 + c^(2 n)) + b^5 c^2 (-1 + c^(2 + 2 n)) +
b^4 c (-1 + c^2 - c^(2 + 2 n) + c^(4 + 2 n) + 2 (b c)^n) -
b^2 c (-2 - c^2 + c^4 + c^(2 + 2 n) + c^(4 + 2 n) +
2 (b c)^n) +
b c^2 (2 - c^(2 + 2 n) - 2 (b c)^n +
c^2 (-1 + 2 (b c)^n)))))/((-1 + a^2) (a - b)^2 (-1 +
a b) (-1 + b^2) (a - c)^2 (b - c)^2 (-1 + a c) (-1 + b c) (-1 +
c^2))