aws lambda – SAM Template "Property or invalid template properties [MyApi]"

I receive the following error after running the CLI command aws cloudformation deploy (after the sam package)

"Failed to create the change set: Waiter ChangeSetCreateComplete failed: Waiter found a terminal failure state Status: FAILED Reason: property or invalid template properties [MyApi]"

This is the template. I can not get information about what the invalid property is. it's possible? If not, what is wrong with this template?

AWSTemplateFormatVersion: 2010-09-09
Transform: AWS :: Serverless-2016-10-31

Resources:
HelloFunction:
Type: AWS :: Without server :: Function
Properties: `enter the code here
Controller: main
Execution time: go1.x
Events:
GetEvent:
Type: Api
Properties:
Path: /
Method: post
#RestApiId :! Ref ApiGateway1

LambdaInvokePermission:
Type: AWS :: Lambda :: Permission
Properties:
FunctionName :! GetAtt
- HelloFunction
- Arn
Action: & # 39; lambda: InvokeFunction & # 39;
Director: apigateway.amazonaws.com
SourceAccount :! Ref & # 39; AWS :: AccountId & # 39;

MyApi:
Type: AWS :: Without server :: Api
Properties:
StageName: by default
EndpointConfiguration: REGIONAL
DefinitionBody:
swagger: "2.0"
info:
Title: "TestAPI"
roads:
/:
obtain:
# parameters:
# - name: "id"
# in consultation"
# required: true
# type: "chain"
# x-amazon-apigateway-request-validator: "Validate the parameters of the query string and 
#  headers "
x-amazon-apigateway-integration:
uri
Fn :: Sub: arn: aws: apigateway: $ {AWS :: Region}: lambda: path / 2015-03-31 / functions / $ {HelloFunction.Arn} / invocations
answers: {}
Http method: "POST"
write: "aws_proxy"



Departures:
FunctioArn:
Value:! GetAtt HelloFunction.Arn
To export:
Name: HelloFunctionArn

test verification: show that the decision problem for "property $ P $ such that $ P (z) $ contains iff $ lambda x. ( left {z right } (x)) $ is total" It can not be resolved.

Show that the decision problem for "the property $ P $ such that $ P (z) $ Holds iff $ lambda x. ( left {z right } (x)) $ it is total "is insoluble.

Here is my work so far, and I'm not sure if it's correct:

Assume such property $ P $ is recursive Then there is a total recursive binary function. $ F $ Universal for all recursive sequences. $ G $. Then for any recursive sequence $ G $, there is a number $ e $ such that $ G = lambda x[F(x,e)]$. But then for the sequence. $ lambda x[F(x,x)+1]$, Yes $ x = e $, so $ G (e) = F (e, e) = F (e, e) + 1 $contradiction