The four adjacent digits in the 1000-digit number that have the

greatest product are 9 × 9 × 8 × 9 = 5832.73167176531330624919225119674426574742355349194934

96983520312774506326239578318016984801869478851843

85861560789112949495459501737958331952853208805511

12540698747158523863050715693290963295227443043557

66896648950445244523161731856403098711121722383113

62229893423380308135336276614282806444486645238749

30358907296290491560440772390713810515859307960866

70172427121883998797908792274921901699720888093776

65727333001053367881220235421809751254540594752243

52584907711670556013604839586446706324415722155397

53697817977846174064955149290862569321978468622482

83972241375657056057490261407972968652414535100474

82166370484403199890008895243450658541227588666881

16427171479924442928230863465674813919123162824586

17866458359124566529476545682848912883142607690042

24219022671055626321111109370544217506941658960408

07198403850962455444362981230987879927244284909188

84580156166097919133875499200524063689912560717606

05886116467109405077541002256983155200055935729725

71636269561882670428252483600823257530420752963450Find the thirteen adjacent digits in the 1000-digit number that have

the greatest product. What is the value of this product?

This is my solution to the problem above.

```
> def largest_product_series(n, series):
> series = str(series)
> largest = 0
> for i in range(0,1000-n):
> temp = np.prod((int(series(j)) for j in range(i,n+i)))
> largest = max(temp, largest)
> return largest
```

I am having a hard time figuring out what is wrong with my code. It works just fine with n = 4. But somehow it didn’t output the correct answer when n = 13.

Here’s the link to the problem. Euler 8