I am trying to debug this sample code from a textbook:

```
Manipulate(
(*Evaluate Eq.(8.2)*)
hh = 1/Sqrt((1 - (r (CapitalOmega)0) ˆ2) ˆ2 + (2 (Zeta) r
(CapitalOmega)0) ˆ2);
thh = ArcTan(1 - (r (CapitalOmega)0) ˆ2,
2 (Zeta) r (CapitalOmega)0);
(*Obtain coefficients from either Eq.(8.5) or Eq.(8.6)*)
cnn = If(ptyp == 1, Abs(Sin(r (Pi) (Alpha))/(r (Pi) (Alpha))),
a1 = (2 Sin(2 (Pi) (Alpha) r) -
Sin(4 (Pi) (Alpha) r))/((Pi) r);
b1 = (1 - 2 Cos(2 (Pi) (Alpha) r) +
Cos(4 (Pi) (Alpha) r))/((Pi) r);
Sqrt(a1ˆ2 + b1ˆ2));
psnn = If(ptyp == 1,
ArcTan(1 - Cos(2 r (Pi) (Alpha)), Sin(2 r (Pi) (Alpha))),
ArcTan(b1, a1));
ptin = Table({n, cnn((n))}, {n, 1, nn});
ptout = Table({n, hh((n)) , cnn((n))}, {n, 1, nn});
lines = Table({{n, 0}, {n,
If(cnn((n)) < hh((n)) cnn((n)), hh((n)) cnn((n)),
cnn((n)))}}, {n, 1, nn});
(*Sum series:Eq.(8.1)*)
xt = If(ptyp == 1, (Alpha) +
2 (Alpha) Total(cnn hh Sin(r (CapitalOmega)0 t - thh + psnn)),
Total(cnn hh Sin(r (CapitalOmega)0 t - thh + psnn)));
(*Coordinates to draw pulse*)
If(ptyp == 1,
pulse1 = {{0, 0}, {0, 1}, {2 (Pi) (Alpha)/(CapitalOmega)0,
1}, {2 (Pi) (Alpha)/(CapitalOmega)0, 0}};
pulse2 = {{2 (Pi)/(CapitalOmega)0, 0}, {2 (Pi)/(CapitalOmega)0,
1}, {(Pi) (Alpha)/(CapitalOmega)0 + 2 (Pi)/(CapitalOmega)0,
1}}, pulse1 = {{0, 0}, {0,
1}, {2 (Pi) (Alpha)/(CapitalOmega)0,
1}, {2 (Pi) (Alpha)/(CapitalOmega)0, -1}, {4 (Pi) (Alpha)/
(CapitalOmega)0, -1}, {4 (Pi) (Alpha)/(CapitalOmega)0, 0}};
pulse2 = {{2 (Pi)/(CapitalOmega)0, 0}, {2 (Pi)/(CapitalOmega)0,
1}, {2 (Pi) (Alpha)/(CapitalOmega)0 +
2 (Pi)/(CapitalOmega)0, 1}});
(*Create two graphs,one above the other*)
GraphicsColumn({Plot(
xt, {t, -(Pi)/(CapitalOmega)0/5.,
2 (Pi)/(CapitalOmega)0 + (Pi) (Alpha)/(CapitalOmega)0},
PlotStyle -> {Red}, PlotRange -> {Full, {-2, 2.3}},
PlotLabel -> label1, AxesLabel -> {"(Tau)", "Amplitude"},
Epilog -> {{Blue, Line(pulse1)}, {Blue, Line(pulse2)}}),
ListLinePlot(lines, PlotStyle -> Black,
PlotRange -> {{0, nn + 1}, Full}, PlotLabel -> label2,
AxesLabel -> {"n=(CapitalOmega)n/(CapitalOmega)0", "Magnitude"},
Epilog -> {{Blue, PointSize(Medium), Point(ptin)}, {Red,
PointSize(Medium), Point(ptout)}})}),
(*Create sliders and radio buttons*)
Style("Periodic Waveform",
Bold), {{ptyp, 1, " "}, {1 -> labs, 2 -> labd},
ControlType -> RadioButton}, Delimiter,
Style("Input Parameters",
Bold), {{(CapitalOmega)0, 0.04, "(CapitalOmega)o"}, 0.01, 1, 0.01,
Appearance -> "Labeled",
ControlType -> Slider}, {{(Alpha), 0.2, la}, 0.02, 0.49, 0.01,
Appearance -> "Labeled", ControlType -> Slider}, Delimiter,
Style("Damping Factor", Bold), {{(Zeta), 0.1, "(Zeta)"}, 0.02, 0.7,
0.01, Appearance -> "Labeled", ControlType -> Slider}, Delimiter,
Style("Frequency Spectrum -", Bold),
Style(" Maximum Number of Harmonics Displayed",
Bold), {{nn, 20, "N"}, 1, 50, 1, Appearance -> "Labeled",
ControlType -> Slider}, ControlPlacement -> Left,
Initialization :> (puls = {{0, 0}, {0, 1}, {0.25, 1}, {0.25, 0}, {1,
0}, {1, 1}, {1.1, 1}};
(*Radio button images*)
labs = ListLinePlot(puls, PlotRange -> {{0, 1.2}, {-0.1, 1}},
Axes -> False, ImageSize -> Tiny,
Epilog -> {Arrowheads(0.1), Arrow({{0, 0.5}, {1, 0.5}}),
Arrow({{1, 0.5}, {0, 0.5}}),
Inset(Style("2(Pi)/(CapitalOmega)0", 14), {0.5, 0.65}),
Inset(Style("(Tau)d", 14), {0.125, 0.1})});
puld = {{0, 0}, {0, 1}, {0.15, 1}, {0.15, -1}, {0.3, -1}, {0.3,
0}, {1, 0}, {1, 1}, {1.1, 1}};
labd =
ListLinePlot(puld, PlotRange -> {{0, 1.2}, {-1.1, 1}},
Axes -> False, ImageSize -> Tiny,
Epilog -> {Arrowheads({-0.1, 0.1}), Arrow({{0, 0.5}, {1, 0.5}}),
Inset(Style("2(Pi)/(CapitalOmega)0", 14), {0.5, 0.75}),
Inset(Style("(Tau)d", 14), {0.075, 0})});
(*Figure titles*)
label1 =
Column({"Time Domain Waveforms",
Row({Style("Input, ", Blue), Style("Output ", Red)})}, Center);
label2 =
Column({"Frequency (Harmonic) Spectrum",
Row({Style(Row({"Input cn"}), Blue),
Style(Row({" Output (cnH((CapitalOmega)n))"}), Red)})},
Center);
(*Slider label*)
la = "(Alpha)=(CapitalOmega)o(Tau)d/(2(Pi))";
r = Range(1, 150);),
TrackedSymbols :> {(CapitalOmega)0, (Alpha), (Zeta), nn, ptyp})
```

The purpose of this code is to represent the periodic Force in a system of a single degree of freedom.

Among this large block, there is a problem with the plot elements that represent this engineering problem. There is an error that says the following:

Coordinate {1, (0.008 $ CellContext`ˆ2 + (1 – 0.04 $Cellcontext`ˆ2) $CellContext`

ˆ2) ^ Rational (-1, 2), 0.9354892837886392} must be a pair of numbers or a scaled or compensated form.

Can anyone help me find the error that is causing the titles in the figures in the graph not to appear correctly?