Availability Groups: Error in the WSFC function when applying SQL 2016 CU7 in a multi-instance SQL environment

Please advise about the following error:

Cluster resource & # 39; AG1_NAME & # 39; of type & # 39; SQL Server Availability Group & # 39; in the grouped function & # 39; AG1_NAME & # 39; failed & # 39;

According to the failure policies for the resource and the function, the cluster service can try to put the resource online in this node or move the group to another node in the cluster and then restart it. Check the resource and group status using Failover Cluster Manager or the Windows PowerShell Get-ClusterResource cmdlet.

Ambient:

AG1: (Primary = SRV01 DEV1, Secondary = SRV02 DEV1, SRV03 DEV1)
AG2: (Primary = SRV02 DEV2, Secondary = SRV03 DEV2, SRV01 DEV2)

The error occurred when updating the AG2 replicas with SQL SERVER 2016 SP2 CU7 which was SQL Server 2016 SP2 CU4.

Updating the order as follows, and there was no error during the update of the assistant

  1. Put the failover in manual in SRV01 DEV2
  2. Updated SRV01 DEV2A WSFC error (mentioned above) was noticed here
  3. Set the failover to Auto in SRV01 DEV2
  4. Put the failover in manual in SRV03 DEV2
  5. Updated SRV03 DEV2
  6. Set the failover to Auto in SRV03 DEV2
  7. Manual failure from SRV02 DEV2 (Primary) a SRV03 DEV2
  8. Updated SRV02 DEV2
  9. Manual of return to SRV02 DEV2 (Primary) of SRV03 DEV2

It is normal to update the second instance of SQL Server, the first instance is interrupted while the server participates in the Availability Groups, or we must follow a particular method in this case to avoid any errors as such.

Fortunately, in particular AG1 and all the WSFC resources worked normally when I look back immediately (after the error) in the WSFC Administrator Functions page. also PowerShell Get-ClusterResource. but I'm worried about the production update and future updates. Any suggestion would be appreciable. Thank you!

Bigfoot Servers – Large VPS Resource Groups – Summer Sales in Los Angeles and Dallas!




BigFootServers, sent some new summer specials in VPS groups that we thought were worth it. They are offering discounted packages in the VPS resource groups. With these VPS groups, they are giving customers the ability to create VPS on demand, both in Los Angeles and Dallas.

You can find your ToS / legal documents here.
They accept PayPal, credit cards and Bitcoin as payment methods.

This is what they had to say:

"BigFootServers was founded when we saw the need for a simpler solution so that small businesses can start online. Our first service business model sets us apart from the rest. At BigFootServers, we treat you with the highest respect you deserve, as our valued customer.

We offer a wide variety of web hosting services to fit everyone's budget. The solutions we offer are unique (in a good way), because they allow you to control your resources and your environment, unlike conventional hosting solutions. These are different from your traditional and conventional hosting solutions, because the services we provide here put you under control. "

Here are the offers:

15 VPS Instance Pool

  • SSD storage: 250GB
  • RAM: 16GB
  • Bandwidth: 30,000GB
  • IPv4 addresses: 15
  • Maximum VPS instances: 15
  • Data centers: Los Angeles and Dallas
  • $ 10.75 / month
  • [ORDER]

20 SSD VPS Instance Pool

  • SSD storage: 300GB
  • RAM: 24GB
  • Bandwidth: 50,000GB
  • IPv4 addresses: 20
  • Maximum of VPS instances: 20
  • Data center: Los Angeles and Dallas
  • $ 15.05 / month
  • [ORDER]

Product description: Create, manage, resize or delete servers on demand in a few clicks! We provide a fund of resources and you determine how they are used. Be sure to see these screenshots of our intuitive and easy-to-use VPS Group Interface here!

NETWORK / HARDWARE INFORMATION:

ColoCrossing – Los Angeles, CA, USA

IPv4 test: 107,175,180.6

Test file: http://107.175.180.6/100MB.test

ColoCrossing – Dallas, TX, USA

IPv4 test: 192.3.237.150

Test file: http://192.3.237.150/100MB.test


– Intel Xeon E3 processors

– 32GB to 64GB of RAM

– HDD 4x2TB

– RAID10 hardware with caching

– 1 Gbps uplink

Please let us know if you have any questions / comments and enjoy!




Elusive groups and transitive graphics of vertices.

Recently, I was reading "TRANSITIONAL PERMUTATION GROUPS WITHOUT SEMIREGULAR SUBGROUP" by Cameron et al. (MSN), where I found the concept of elusive groups.

I understand that the transitive subgroups of the elusive groups are elusive.

My question is: in light of the Polycirculant conjecture, which of the following statements is true?

The elusive groups can not be the COMPLETE automorphism group of any transitive vertex graph.

or

The elusive groups can not be a transitive subgroup of the COMPLETE automorphism group of any transitive vertex graph.

PS I am trying to understand how an elusive group is an obstacle to the conjecture of the polycirculation.

Placed at: https://math.stackexchange.com/questions/3291579/elusive-groups-and-vertex-transitive-graphs

elliptic curve (y ^ 2 = x ^ 3 + 3x +8) (mod 13) – torsion groups

Corollary 6.4. Leave $ E $ be an elliptical curve and leave $ m en mathbb {Z} $ with $ m ne $ 0.

(b) yes $ m ne $ 0 in $ K $, that is, if any $ operatorname {char} (K) = 0 $ or $ p: = operatorname {char} (K)> 0 $ Y $ p nmid m $, so $ E[m] = mathbb {Z} / m mathbb {Z} times mathbb {Z} / m mathbb {Z} $.

(page 86 of [Silverman, The Arithmetic of Elliptic Curves, 2nd Edition])

Leave $ E: y ^ 2 = x ^ 3 + 3x + 8 $ finished $ mathbb {Z} / 13 mathbb {Z} $. I just calculated the points on this curve. exist $ # E[3] stackrel {?} {=} 2 $ order points $ 3 $ Y $ # E[9] stackrel {?} {=} 6 $ Points of order 9.

(i) expected $ 9 $ order points $ 3 $, as $ # E[3] = # left ( mathbb {Z} / 3 mathbb {Z} times mathbb {Z} / 3 mathbb {Z} right) = $ 9. Because there is only $ 2 $ order points $ 3 $?

(ii) I calculated $ # E ( mathbb {Z} / 13 mathbb {Z}) = $ 9 (by brute force). So I understand the above Corollary 6.4, there must be some points of order $ 5 $, as $ p = 13 nmid 5 $. But the existence of such a point $ P in E[5]$ would imply the existence of some subgroup $ langle P rangle leq E ( mathbb {Z} / 13 mathbb {Z}) $ With order $ 5 $ as well. This can not happen, since the order of a subgroup must divide the order of the upper group. As $ 5 nmid 9 $, there can be no points of order $ 5 $.

What am I missing?

Geometry of ag.algebraic: definition of retraction of Chow groups under a special type of morphism

Leave $ X $ be a normal complex projective variety (not necessarily smooth), and leave $ Y $ Being a complex projective variety without problems. Leave $ Z subset X $ Be a soft closed sub-variety.

Leave $ pi: Y rightarrow X $ Be a map with the property that. $ pi $ it's an isomorphism about $ X setminus Z $, plus $ pi $ is a $ mathbb {P} ^ n $– package about $ Z $ for some $ n $.

(Note that $ pi $ It can not be an explosion if codim$ Z neq n + 1 $, for example.)

My question is: Can we define? pull back Map $ pi ^ *: CH_k (X) rightarrow CH_k (Y) $ for chow groups? In general, pull-backs can be defined when $ pi $ is flat or a local full intersection The map, but in my case, clearly. $ pi $ It's not flat, and I'm not sure if $ pi $ It's actually a local full intersection.

Any help or reference would be welcome.

How to let yourself be united in groups of data.

I would like to know how to merge columns to the left for each group of data that are returned in a data set. The template should fill in the blanks for each group where records are missing. Groups 1 and 2 are part of a single query and must be part of the same set of results.

MODEL

Name Num
------------------------------------
Apples 10
Bananas 20
Oranges 15
Pineapple 5
Grapes 30
Chips 50
Chocolate 6   

GROUP 1

Name Num Group
------------------------------------
Grapes 3 - 1
Chips 17 - 1

GROUP 2

Name Num Group
------------------------------------
Bananas 30 - 2
Oranges 10 - 2

NEW GROUP 1

Name Num Group
------------------------------------
Apples 10 1 - template
Bananas 20 1 <- Template
Oranges 15 1 <- Template
Pineapple 5 1 <- Template
Grapes 3 1 <- equal
Chips 17 1 <- equal
Chocolate 6 1 <- template

NEW GROUP 2

Name Num Group
------------------------------------
Apples 10 2 <- of the template
Bananas 30 2 <- equal
Oranges 10 2 <- equal
Pineapple 5 2 <- Template
Grapes 30 2 <- template
Chips 50 2 <- template
Chocolate 6 2 <- template

categories – build isotope filter groups with category terms

I'm sorry for the big question. I am a little lost and I want to provide all the possible data for the understanding of the problem. There are two options to achieve the goal. First, generate the marking with a walker, second, generate the marking by iterating a matrix. The main question is how to build it with a walker. Although I offer my attempt to build it with a matrix to ask if it is a good practice.

I have this structure of category terms:

term-1-level-1
term-2-level-2
term-3-level-2
term-3-level-2
term-4-level-2
term-5-level-1
term-6-level-2
term-7-level-2
term-8-level-2

Trying to build this marking based on the terms of the category:

The question is: is it possible to build it with the walker class? I tried to extend Walker and Walker_Category, without success, like this:

the Isotope_Walker class extends  Walker {

public $ tree_type = & # 39; category & # 39 ;;

public $ db_fields = array (& # 39; parent & # 39; => & # 39; parent & # 39 ;, & # 39; id & # 39; => & # 39; term_id & # 39;);

function start_lvl (& $ output, $ depth = 0, $ args =[]) {
$ output. = " n
north"; } function end_lvl (& $ output, $ depth = 0, $ args =[]) { $ exit. = "
north"; } start_el function (& $ output, $ category, $ depth = 0, $ args = [], $ id = 0) { $ exit. = & # 39;& # 39 ;; } }

On the other hand, I know that I can build a matrix with terms to iterate the matrix, like this:

public function filters ()
{
$ terms = get_terms (array (
& # 39; taxonomy & # 39; => & # 39; category & # 39 ;,
& # 39; hide_empty & # 39; => false,
));

foreach ($ terms like $ term) {
if ($ term-> parent === 0 && $ term-> slug! = & # 39; no-category & # 39;) {
$ parents[] = [
                    'id' => $term->term_id,
                    'name' => $term->name,
                    'slug' => $term->slug,
                ];
}
}

foreach ($ parents as $ father) {
$ parent_id = $ parent['id'];
$ {& # 39; parent_childs _ & # 39 ;. $ parent_id}['parent_' . $parent_id] = $ father;
foreach ($ terms like $ term) {
if ($ term-> parent === $ parent_id) {
$ {& # 39; childs_of _ & # 39 ;. $ parent_id}[] = [
                        'id' => $term->term_id,
                        'name' => $term->name,
                        'slug' => $term->slug,
                    ];
}

if (isset ($ {& # 39; childs_of _ & # 39 ;. $ parent_id})) {
$ {& # 39; parent_childs _ & # 39 ;. $ parent_id}['childs_' . $parent_id] = $ {& # 39; childs_of _ & # 39 ;. $ parent_id};
}
}

$ exit['parent_childs_' . $parent_id] = $ {& # 39; parent_childs _ & # 39 ;. $ parent_id};

}

returns $ output;
}

This returns:

matrix (size = 3)
& # 39; parent_childs_3 & # 39; =>
matrix (size = 2)
& # 39; father_3 & # 39; =>
matrix (size = 3)
& Id; & # 39; id & # 39; => int 3
& # 39; name & # 39; => string & # 39; Visual Arts & # 39; (length = 14)
& # 39; slug & # 39; => string & # 39; visual-arts & # 39; (length = 14)
& # 39; childs_3 & # 39; =>
matrix (size = 6)
0 =>
matrix (size = 3)
& Id; & # 39; id & # 39; => int 4
& # 39; name & # 39; => Chain & Sculpture & # 39; (length = 9)
& # 39; slug & # 39; => string & # 39; sculpture & # 39; (length = 9)
1 =>
matrix (size = 3)
& Id; & # 39; id & # 39; => int 4
& # 39; name & # 39; => Chain & Sculpture & # 39; (length = 9)
& # 39; slug & # 39; => string & # 39; sculpture & # 39; (length = 9)
2 =>
matrix (size = 3)
& Id; & # 39; id & # 39; => int 4
& # 39; name & # 39; => Chain & Sculpture & # 39; (length = 9)
& # 39; slug & # 39; => string & # 39; sculpture & # 39; (length = 9)

Therefore, I can iterate it and build the markup without walker. With regard to this method, I would like to ask if it is a good practice or if it is better in the way of the walkers.

Thank you!

Statistics – How can I model the probabilities for the highest and lowest opposing dice groups?

This is a variation of a dice mechanic that I'm working on.

Create a group of 6 dice from Edge and dice from Snag and roll all of them.

Compare the highest edge die and the highest die.

If the edge die is higher, that is your result.

If the Snag die is greater, the result is the lower They die rolled (among them all).

If they are tied, cancel them and compare the second highest.

If all of them are tied, keep the lower Anyway, he dies rolled up.

Example 01: Throw 3 edge dice {3, 5, 6} and 2 hook dice {4, 5}. Result: 6


Example 02: Throw 2 edge dice {2,5} and 4 hook dice {3, 3, 4, 6}. Result: 2


Example 03: Shot 1 edge dice {3} and 1 hook dice {5}. Result: 3


Would you help me model it in AnyDice?

Member name of Google groups no longer allows special characters

Until recently, I was able to include our member's lot number in the member's name in double quotes:
"103.08 Jane Jones"
This now shows the double quotes in the name.
How do I add this name now?

Reductive groups in algebraic geometry.

Presumably, this is a fairly broad question, but so far I have not found a discussion that addresses the following question: in many fields of algebraic geometry (eg, GIT or topics on etale cohomology) that use concepts of group schemes (or more) form of algebraic groups) the kind of reductive Groups / group schemes seem to play a prominent role.

What is the deeper meaning of the reductive algebraic groups that make them so interesting for the fields mentioned above? What are its amazing characteristics in light of applications in algebraic geometry? Is there any philosophy behind it?