I am trying to plot the y-axis value as a percent form. By using PercentForm for the Ticks which I followed Changing tick labels to percent, I can plot the y-axis in percent. However, this approach only works when I do not specify the "Frame->True".Can anybody explain this to me? Thanks

# Tag: function

## plotting – Which function should I use to spherically 3D plot an interpolation function of two variables

I have a dataset in the form:

```
valuesfitC12 = {{{-180, 0}, 21.14`}, {{-180, 5}, 21.29`}, {{-180, 10},
21.44`}, {{-180, 20}, 21.74`}, {{-180, 30}, 21.84`}, {{-170, 0},
21.14`}, {{-170, 5}, 21.34`}, {{-170, 10}, 21.44`}, {{-170, 20},
21.69`}, {{-170, 30}, 21.79`}, {{-160, 0}, 21.14`}, {{-160, 5},
21.34`}, {{-160, 10}, 21.39`}, {{-160, 20}, 21.74`}, {{-160, 30},
21.84`}, {{-150, 0}, 21.14`}, {{-150, 5}, 21.34`}, {{-150, 10},
21.44`}, {{-150, 20}, 21.69`}, {{-150, 30}, 21.79`}, {{-140, 0},
21.14`}, {{-140, 5}, 21.29`}, {{-140, 10}, 21.49`}, {{-140, 20},
21.69`}, {{-140, 30}, 21.69`}, {{-130, 0}, 21.14`}, {{-130, 5},
21.34`}, {{-130, 10}, 21.39`}, {{-130, 20}, 21.74`}, {{-130, 30},
21.84`}, {{-120, 0}, 21.14`}, {{-120, 5}, 21.29`}, {{-120, 10},
21.44`}, {{-120, 20}, 21.74`}, {{-120, 30}, 21.84`}, {{-110, 0},
21.14`}, {{-110, 5}, 21.34`}, {{-110, 10}, 21.44`}, {{-110, 20},
21.69`}, {{-110, 30}, 21.79`}, {{-100, 0}, 21.14`}, {{-100, 5},
21.34`}, {{-100, 10}, 21.39`}, {{-100, 20}, 21.74`}, {{-100, 30},
21.84`}, {{-90, 0}, 21.14`}, {{-90, 5}, 21.34`}, {{-90, 10},
21.44`}, {{-90, 20}, 21.69`}, {{-90, 30}, 21.79`}, {{-80, 0},
21.14`}, {{-80, 5}, 21.29`}, {{-80, 10}, 21.49`}, {{-80, 20},
21.69`}, {{-80, 30}, 21.69`}, {{-70, 0}, 21.14`}, {{-70, 5},
21.34`}, {{-70, 10}, 21.39`}, {{-70, 20}, 21.74`}, {{-70, 30},
21.84`}, {{-60, 0}, 21.14`}, {{-60, 5}, 21.29`}, {{-60, 10},
21.44`}, {{-60, 20}, 21.74`}, {{-60, 30}, 21.84`}, {{-50, 0},
21.14`}, {{-50, 5}, 21.34`}, {{-50, 10}, 21.44`}, {{-50, 20},
21.69`}, {{-50, 30}, 21.79`}, {{-40, 0}, 21.14`}, {{-40, 5},
21.34`}, {{-40, 10}, 21.39`}, {{-40, 20}, 21.74`}, {{-40, 30},
21.84`}, {{-30, 0}, 21.14`}, {{-30, 5}, 21.34`}, {{-30, 10},
21.44`}, {{-30, 20}, 21.69`}, {{-30, 30}, 21.79`}, {{-20, 0},
21.14`}, {{-20, 5}, 21.29`}, {{-20, 10}, 21.49`}, {{-20, 20},
21.69`}, {{-20, 30}, 21.69`}, {{-10, 0}, 21.14`}, {{-10, 5},
21.34`}, {{-10, 10}, 21.39`}, {{-10, 20}, 21.74`}, {{-10, 30},
21.84`}, {{0, 0}, 21.14`}, {{0, 5}, 21.29`}, {{0, 10},
21.44`}, {{0, 20}, 21.74`}, {{0, 30}, 21.84`}, {{10, 0},
21.14`}, {{10, 5}, 21.34`}, {{10, 10}, 21.44`}, {{10, 20},
21.69`}, {{10, 30}, 21.79`}, {{20, 0}, 21.14`}, {{20, 5},
21.34`}, {{20, 10}, 21.39`}, {{20, 20}, 21.74`}, {{20, 30},
21.84`}, {{30, 0}, 21.14`}, {{30, 5}, 21.34`}, {{30, 10},
21.44`}, {{30, 20}, 21.69`}, {{30, 30}, 21.79`}, {{40, 0},
21.14`}, {{40, 5}, 21.29`}, {{40, 10}, 21.49`}, {{40, 20},
21.69`}, {{40, 30}, 21.69`}, {{50, 0}, 21.14`}, {{50, 5},
21.34`}, {{50, 10}, 21.39`}, {{50, 20}, 21.74`}, {{50, 30},
21.84`}, {{60, 0}, 21.14`}, {{60, 5}, 21.29`}, {{60, 10},
21.44`}, {{60, 20}, 21.74`}, {{60, 30}, 21.84`}, {{70, 0},
21.14`}, {{70, 5}, 21.34`}, {{70, 10}, 21.44`}, {{70, 20},
21.69`}, {{70, 30}, 21.79`}, {{80, 0}, 21.14`}, {{80, 5},
21.34`}, {{80, 10}, 21.39`}, {{80, 20}, 21.74`}, {{80, 30},
21.84`}, {{90, 0}, 21.14`}, {{90, 5}, 21.34`}, {{90, 10},
21.44`}, {{90, 20}, 21.69`}, {{90, 30}, 21.79`}, {{100, 0},
21.14`}, {{100, 5}, 21.29`}, {{100, 10}, 21.49`}, {{100, 20},
21.69`}, {{100, 30}, 21.69`}, {{110, 0}, 21.14`}, {{110, 5},
21.34`}, {{110, 10}, 21.39`}, {{110, 20}, 21.74`}, {{110, 30},
21.84`}, {{120, 0}, 21.14`}, {{120, 5}, 21.29`}, {{120, 10},
21.44`}, {{120, 20}, 21.74`}, {{120, 30}, 21.84`}, {{130, 0},
21.14`}, {{130, 5}, 21.34`}, {{130, 10}, 21.44`}, {{130, 20},
21.69`}, {{130, 30}, 21.79`}, {{140, 0}, 21.14`}, {{140, 5},
21.34`}, {{140, 10}, 21.39`}, {{140, 20}, 21.74`}, {{140, 30},
21.84`}, {{150, 0}, 21.14`}, {{150, 5}, 21.34`}, {{150, 10},
21.44`}, {{150, 20}, 21.69`}, {{150, 30}, 21.79`}, {{160, 0},
21.14`}, {{160, 5}, 21.29`}, {{160, 10}, 21.49`}, {{160, 20},
21.69`}, {{160, 30}, 21.69`}, {{170, 0}, 21.14`}, {{170, 5},
21.34`}, {{170, 10}, 21.39`}, {{170, 20}, 21.74`}, {{170, 30},
21.84`}, {{180, 0}, 21.14`}, {{180, 5}, 21.29`}, {{180, 10},
21.44`}, {{180, 20}, 21.74`}, {{180, 30}, 21.84`}};
```

… and I’m creating a interpolation function the following way:

```
newvalfit =
Partition(
Riffle(Reverse(valuesfitC12((All, 1))*Pi/180, 2),
valuesfitC12((All, 2))), 2); (*convert to radian*)
f = Interpolation(newvalfit)
```

… which gives me an interpolation function of form `f(theta,phi)`

.

I can’t seem to find a way how get a spherical plot by limiting `theta=(0,Pi/6)`

and `phi(-Pi,Pi)`

since every other value of the function is extrapolated and I can’t use. I’ve tried this but the ranges are totally off, even though I explicitly set them:

```
SphericalPlot3D(f(theta, phi), {theta, 0, Pi/6}, {phi, -Pi, Pi},
BoxRatios -> {1, 1, 0.5})
```

Also my function values should only lie between `{21.14 , 21.84}`

but that doesn’t seem to be the case. Is there another way to plot it? What am I doing wrong? Many thanks in advance!

## Dictionary file to read from javascript function

I’m trying to implement an application in js. As an input, I’ll have a brief text and I’d like to compare some words from this text with a dictionary I still have to make.

For example, if I have in the input the word “greater” I would like to look in the dictionary if there are any key that has it. But, in the dictionary I’d like to have more than 1 value for each key.

Do you know guys how it would be the best way to implement this?

## How to make DSolve express constants in terms of the unknown function

If I do

```
DSolve[y'[x] == y[x], y[x], x]
```

Mathematica returns

```
{{y[x] -> E^x C[1]}}
```

Is there a way to have it return this instead?

```
{{y[x] -> E^x y[0]}}
```

## use of an uninitialized value in a function in c++

I’m studying the code for a calculator from here: https://github.com/dlasalle/wx-calc

```
bool m_decimal;
template<int NUM>
void WxCalcWindow::onNumButton( wxCommandEvent&)
{
m_entryMode = true;
// accumulate number
if (!m_decimal) {
m_preDecimal += std::to_string(NUM);
} else {
m_postDecimal += std::to_string(NUM);
}
```

As far as I know, m_decimal is undefined, ie contains garbage. Why didn’t the author initialize it in the first place?

Thank you very much.

## apache – mod_headers check for existence of multiple cookies and perform a function only on those cookies

I have a requirement on Apache 2.4 wherein I’d like to check for specific cookies and set the `HTTPOnly`

plus Secure flags only on those Cookies and ignore other Cookies.

E.g. On browser I have the following Cookies for the same web domain i.e. `CookieA`

, `CookieB`

, `CookieC`

, `CookieD`

, `CookieE`

, `CookieF`

.

However in Apache (`mod_headers`

), I’d like to match using `CookieName`

only `CookieB`

and `CookieC`

; then update the settings for `HTTPOnly`

and `Secure`

Flags only for `CookieB`

and `CookieC`

.

**PseudoLogic :**

```
If getAllCookies contains CookieB
then update only CookieB (Header edit Set-Cookie (CookieB) "$1; HTTPOnly; Secure"
elseIf getAllCookies contains CookieC
then update only CookieC (Header edit Set-Cookie (CookieC) "$1; HTTPOnly; Secure"
endIf
```

## Integral of Legendre’s function

Is there any formula for computing the following integral $$int_a^1(P^m_l)^2(x),dx;-1<a<1$$

where $P^m_l$ is the associated Legendre’s function ( of first kind) of order $minmathbb{N}$ and of degree $l=-0.5+it$ with $tinmathbb{R}$.

## list manipulation – Using sequence to complete arguments to a function

I have a function of, say 4 arguments `f[a,b,{c,e},d]`

where some of the arguments are lists. Given a list of triplets that are possible last-three-arguments to `f`

I’d like to paste them as arguments to `f`

as in

`Map[f[2, # /. List -> Sequence] &, {{1, {2, -2}, 3}, {0, {2, -2}, 4}, {3, {5, -5}, 7}}]`

but this gives me

`{f[2, 1, 2, -2, 3], f[2, 0, 2, -2, 4], f[2, 3, 5, -5, 7]}`

whereas I wanted

`{f[2, 1, {2, -2}, 3], f[2, 0, {2, -2}, 4], f[2, 3, {5, -5}, 7]}`

How can I get the result I want?

## numerical integration – Integrate over one variable of a 2D interpolating function returned from NDEigensystem

I’m trying to implement the answer for “Integrate only one variable of a 2D interpolating function” (https://mathematica.stackexchange.com/a/161962/73672) but for interpolating functions returned from NDEigenSystem it isn’t working.

First I solved for my required eigenfunctions and stored them as “funs”:

```
A = 0.0025; Subscript(V, 0) = 1 ; d = 2;
schröd = -A*d^2 (Pi)*D((Psi)(n, (CurlyPhi)), {(CurlyPhi), 2}) +
A/(4 (Pi)) ((CurlyPhi)*(CurlyPhi)*(Psi)(n, (CurlyPhi)) +
2 I*D((Psi)(n, (CurlyPhi)), {n, 1}) -
D((Psi)(n, (CurlyPhi)), {n, 2})) -
Subscript(V,
0) ((Cos(2 (Pi)*d*n)) + Cos((CurlyPhi)) - 20) (Psi)(
n, (CurlyPhi));
Subscript(n, min) = -1/2; Subscript(n, max) = 1/2; Subscript( (CurlyPhi), min) = -(Pi); Subscript((CurlyPhi), max) = (Pi);
{vals, funs} = NDEigensystem({schröd,
PeriodicBoundaryCondition((Psi)(n, (CurlyPhi)),
Subscript((CurlyPhi), min) <= (CurlyPhi) <=
Subscript((CurlyPhi), max) && n == Subscript(n, max) ,
FindGeometricTransform({{Subscript(n, min),
Subscript((CurlyPhi), min)}, {Subscript(n, min),
Subscript((CurlyPhi), max)}}, {{Subscript(n, max),
Subscript((CurlyPhi), min)}, {Subscript(n, max),
Subscript((CurlyPhi), max)}})((2))),
PeriodicBoundaryCondition(Exp(I 2 (Pi) n)*(Psi)(n, (CurlyPhi)),
Subscript(n, min) <= n <= Subscript(n, max) && (CurlyPhi) ==
Subscript((CurlyPhi), max),
FindGeometricTransform({{Subscript(n, min),
Subscript((CurlyPhi), min)}, {Subscript(n, max),
Subscript((CurlyPhi), min)}}, {{Subscript(n, min),
Subscript((CurlyPhi), max)}, {Subscript(n, max),
Subscript((CurlyPhi), max)}})((2)))}, (Psi)(
n, (CurlyPhi)) , {n, (CurlyPhi)} (Element)
Rectangle({Subscript(n, min), Subscript((CurlyPhi),
min)}, {Subscript(n, max), Subscript((CurlyPhi), max)}), 8);
```

The answer to the other question was as follows:

```
da = Flatten(
Table({t, tau, N@Sin(2 (t + 3 tau)) Exp(-2 t - tau)}, {t, 0, 2,
2/100}, {tau, 0, 5, 5/100}), 1);
f = Interpolation@da;
{{x1, x2}, {y1, y2}} = f("Domain");
intx = Integrate(f(x, y), x) /. x -> x2;
nintx(y_?NumericQ) := Module({x}, NIntegrate(f(x, y), {x, x1, x2}));
Plot(nintx(y), {y, y1, y2}, PlotRange -> All)
```

However, trying to implement this myself gives an error after the third line, I believe because it reads n2 as 0.5:

```
f = funs((1));
{{n1, n2}, {(CurlyPhi)1, (CurlyPhi)2}} = f("Domain");
intn = Integrate(f(n, (CurlyPhi)), n) /. n -> n2;
```

General::ivar: 0.5 is not a valid variable.

Integrate::ilim: Invalid integration variable or limit(s) in 0.5.

Thank you so much in advance for your help!

## G sheet How to jump over no value cells with SUMIF function

I would to get the sum of the duration of the column B

```
+---+----------+
| A | 14:45:00 |
+---+----------+
| A | #Value! |
+---+----------+
| A | 13:34:50 |
+---+----------+
| B | 23:41:00 |
+---+----------+
| B | 43:46:00 |
+---+----------+
```

I’m using these functions :

`=SUMIF( A1:A5 ; "B" ;B1:B5 )`

this one gives me the sum of time

`=SUMIF( A1:A5 ; "A" ;B1:B5 )`

This one doesn’t work because I’ve an Error with #Value! in B2.

How to jump over the “#Value! Error” cells with SUMIF ?