sql server – SP2007 (All)UserData nvarchar field content garbled for choice fields

In our Sharepoint 2007, one of our lists field is configured as such:

<Field Type="Choice" DisplayName="Standard" Required="FALSE" Format="RadioButtons" FillInChoice="FALSE" Group="gc_xyz" ID="{e5d39160-a777-4d70-b372-a7ca76305adc}" SourceID="{21f217b9-cbc5-44b8-96b7-2c665aecc37f}" StaticName="Standard" Name="Standard" ColName="nvarchar20" RowOrdinal="0"> <CHOICES> <CHOICE>Yes</CHOICE> <CHOICE>No</CHOICE> </CHOICES> </Field>

But when I look in the AllUserData table (or its view), the data for this field is like this:
| nvarchar20 |

All values are different, as if hashed. How do I read those values to translate them to Yes/No?

Woocommerce Custom product fields need to be editable after purchase in View Orders Page

I am Using https://stackoverflow.com/questions/46612499/display-a-custom-field-value-in-woocommerce-orders-edit-view/#answer-46615303 answer code, which works fine.

I want to display that checkout custom fields on My Account > View Order Pages, to allow customer to edit its value after purchase, so Customers can change and save the custom field value.

Any help?

Mandatory Fields Error on Manual order pay page – woocommerce

I’m facing issues with required mandatory fields on the manually generated orders page (payment link through email).

WooCommerce scenario: an order is created by admin. This order’s payment link is sent by email to the customer to pay.

Link like this:


The problem is that when I’m trying to proceed with the payment it says

"Sorry, there was an error: The field Address is mandatory., The field City Name is mandatory."

My question is, there are no user entry fields on this page then why it is showing mandatory fields required. FYI this is working fine on chrome browsers(desktop only) but when the same link is accessed from chrome mobile or safari the error shows up. above give link is the working link, kindly assist me here.

I’m not using any kind of plugin to manage checkout fields.
This feels strange as there are no fields on the page but it still shows the required fields error.

forms – Validation for if all fields are required when an optional field has a value

I have a form that has an optional username/password input but when either the username or password has a value it causes them both to be required. Not sure how I should approach this?
So far the validation looks a little wordy:
enter image description here

I considered this kind of validation, but it gives an either/or impression:

enter image description here

8 – How to migrate content (fields and paragraphs) into another content type?

My problem is following:

Initial situation

At my Drupal 8 site I have a node content type (let’s calling it node content type A). node content type A has normal (core) fields included and also holds a field with paragraphs items.

Problem/proposed solution

Now I have to change my data model. Due to it’s not adviced to change node content type machine name in a Drupal 8 site, I should go another way:

  1. Clone the content type (would use Entity type clone module for this step). Let’s calling it node content type B
  2. Clone all already existing content of node content type A into new nodes of node content type B
  3. Modify each content/content type as needed by the requirements of the new data model.


How can I perform step 2, especially with the existing paragraphs items?

Thanks in advance for help and/or alternative ways.

plugin development – How to query a nested filed in wordpress api using _fields param

I’m trying to access certain fields which are deeply nested using _fields param which is offerd by wordpress.
what’s wrong with my query?

structure of response.

    "_embedded" : {
        wp:featuredmedia : [
                "id": 21917,
                 "date": "2021-02-27T11:56:48",
                 "slug": "SLUG",
                 "type": "attachment",
                 "link": "https://SITENAME.net/POST/POST/",
                  "title": {
                     rendered": "SLUG NAME"

Desired response :

    "_embedded" : {

        wp:featuredmedia : [
                 "link": "https://SITENAME.net/POST/POST/",


Query I’m Trying to use:


abstract algebra – Suppose $F ⊂ K$ are fields. Let $f(x) ∈ F[x] ⊂ K[x]$. Suppose that $f(x)$ is irreducible in $K[x]$. Prove that $f(x)$ is also irreducible in $F[x]$.

Suppose $F ⊂ K$ are both fields. Let $f(x) ∈ F(x) ⊂ K(x)$. Suppose that $f(x)$ is irreducible in $K(x)$.

$a)$ Prove that $f(x)$ is also irreducible in $F(x)$.

$b)$ Is it true that if $f(x)$ is irreducible in $F(x)$, then it is irreducible in $K(x)$, if not, give an example.

My attempt:

$a)$ Since $f(x)$ is irreducible over $K$, then $K(x)/(f(x))$ is a field (I have previously proven this).

But since $F ⊂ K$, then $F(x) ⊂ K(x)$ and thus, $F(x)/(f(x))⊂K(x)/(f(x))$.

Since $F(x)/(f(x))$ is a subfield, then it is a field, and so $f(x)$ is irreducible over $F$.

Is my attempt correct?

And I don’t think this still holds if $f(x)$ is irreducible over $F$. Can someone please clarify part $(b)$ and give an example? Thank you

Tits reductive groups over local fields, 1.15/3.11. Problem with affine root subgroups of $SU_3$ ramified, residue characteristic p=2

Let $L/K$ be ramified quadratic extension of local fields, and let characteristic of the residue field of $K$ be $2$. Let $mathbb{G}=SU_3$, $G=mathbb{G}(K)$. Let $text{val}$ be a valuation on $K$ so that $text{val}(K^times) = mathbb{Z}$ (and $text{val}(L^times) = frac{1}{2}mathbb{Z}$).

Following Tits 1.15 and 3.11, I have been trying to work out the parahoric subgroups of $G$ attached to the special vertices $nu_0$ and $nu_1$ in the building of $G$.

Firstly, I’ll start with a description of the root subgroups of $G$. I’m using a slightly different notation from Tits’. Let $$u_+(c,d) = begin{pmatrix} 1 & -bar{c} & d \ 0 & 1 & c \ 0 & 0 & 1 end{pmatrix},$$
with $bar{c}c+d+bar{d}=0$.
Similarly, $$u_-(c,d) = begin{pmatrix} 1 & 0 & 0 \ c & 1 & 0 \ d & -bar{c} & 1 end{pmatrix},$$
with $bar{c}c+d+bar{d}=0$.

We have the root subgroups $U_{pm a}(K) = { u_pm(c,d) text{ : } c,d in L }$ and $U_{pm 2a} = { u_pm(0,d) text{ : } d in L}$.

Tits later defines $delta = sup{text{val}(d) text{ : } d in L, , bar{d}+d+1=0}$. $delta=0$ in the unramified case and in the ramified, residue characteristic $pneq 2$ case. However, when $L/K$ is ramified with residue characteristic $2$, $delta$ is strictly negative.

From here, Tits finds the set of affine roots of $G$ as $$Big{pm a + frac{1}{2}mathbb{Z} +frac{delta}{2}Big} cup Big{pm 2a +mathbb{Z}+ frac{1}{2} + delta Big}.$$

Affine root subgroups are given by $$U_{pm a + gamma/2} = { u_pm(c,d) text{ : } text{val}(d) geq gamma},$$
$$U_{pm 2a+ gamma} = { u_pm(0,d) text{ : } text{val}(d) geq gamma}.$$

The special points $nu_0$ and $nu_1$ i the standard apartment are defined by $$a(nu_1)=frac{delta}{2}, , a(nu_0) = frac{delta}{2} + frac{1}{4}.$$

From here, one can find that $$G_{nu_1} = langle T_0, U_{a-frac{delta}{2}}, U_{-a+frac{delta}{2}}, U_{2a+frac{1}{2}-delta}, U_{-2a+frac{1}{2}+delta} rangle,$$
$$G_{nu_0} = langle T_0, U_{a-frac{delta}{2}}, U_{-a+frac{1}{2}+frac{delta}{2}}, U_{2a-frac{1}{2}-delta}, U_{-2a+frac{1}{2}+delta} rangle.$$

In 3.11, Tits takes a $lambda in L$ with $text{val}(lambda) = delta$, satisfying $lambda+bar{lambda}+1=0$ in a way such that $lambda varpi_L + overline{(lambda varpi_L)}=0$ for some uniformizer $varpi_L$ of the ring of integers $mathcal{O}_L$ of $L$.

In 3.11, Tits defines the lattices $$Lambda_{nu_1} = mathcal{O}_L oplus mathcal{O}_L oplus lambdamathcal{O}_L,$$
$$Lambda_{nu_0} = varpi_L^{-1}mathcal{O}_L oplus mathcal{O}_L oplus lambdamathcal{O}_L.$$ Let $P_{nu_1}$ and $P_{nu_0}$ be their respective stabilizers.
Tits then states that $G_{nu_i} = P_{nu_i} cap G_{nu_i}$ for $i=0,1$.

Here’s where my problem comes in.

Consider $G_{nu_1} = langle T_0, U_{a-frac{delta}{2}}, U_{-a+frac{delta}{2}}, U_{2a+frac{1}{2}-delta}, U_{-2a+frac{1}{2}+delta} rangle.$ The stabilizer of the lattice $Lambda_{nu_1}$ in $GL_3(L)$ has the form
$$begin{pmatrix} mathcal{O}_L & mathcal{O}_L & mathfrak{p}_L^{-2delta} \ mathcal{O}_L & mathcal{O}_L & mathfrak{p}_L^{-2delta} \ mathfrak{p}_L^{2delta} & mathfrak{p}_L^{2delta} & mathcal{O}_L end{pmatrix}.$$
Since $text{val}(delta) < 0$, intersecting this stabilizer with $G$ would give us a matrix roughly looking like
$$begin{pmatrix} mathcal{O}_L & mathfrak{p}_L^{-2delta} & mathfrak{p}_L^{-2delta} \ mathcal{O}_L & mathcal{O}_L & mathfrak{p}_L^{-2delta} \ mathfrak{p}_L^{2delta} & mathcal{O}_L & mathcal{O}_L end{pmatrix},$$

Presumeably, this would tell us that $$U_{a-frac{delta}{2}} = { u_+(c,d) text{ : } c,d in L, , text{val}(d) geq -delta textbf{ and } text{val}(c) geq -delta },$$
$$U_{-a+frac{delta}{2}} = {u_{-}(c,d) text{ : } c,d in L, , text{val}(d) geq delta textbf{ and } text{val}(c) geq 0 }.$$
Normally, one would expect that if $text{val}(d) = gamma$, then $text{val}(d) = frac{gamma}{2}$ or $frac{gamma}{2}+frac{1}{4}$, as whether $gamma in mathbb{Z}$ or just $frac{1}{2}mathbb{Z}$.

I cannot work out algebraically why we have these improved bounds on the valuation of $c$ for these affine root subgroups. I assume it involves some manipulation with $lambda$, but I am not making any progress.

Thank you

ag.algebraic geometry – Covering abelian varieties over finite fields with the product of curves

Question. Given an $n$-dimensional abelian variety $X$ over a finite field, is it possible to find smooth projective curves
$C_1,ldots, C_n$ such that there exists a finite regular map
$C_1times ldots times C_nrightarrow X$?

I was thinking maybe using the space filling curve, we have a sequence of space-filling curves that cover all rational points, picking $n$ of them we can define a map from their product to $X$, by first mapping the product to the product of $n$-copies of $X$ and then taking the sum of it. This gives a regular map from product of $n$ curves to $X$ which is surjective let’s say on $mathbb{F}_{p^m}$ points, which we can take $m$ to be arbitrarily large. The only problem is that one needs to verify that image of this map is $n$-dimensional. Although I don’t know how to prove it, it seems intuitively obvious.

pnp powershell – update sharepoint list fields from exist sharepoint list

We need to fetch data from one SharePoint list and then update those fields data into another SharePoint list using pnp pwoershell command. Can anyone please guide or share pnp script for us. Thanks in advance.

Note: We are using SharePoint Online