I am trying to solve a PDE system with periodic boundary conditions using NDSolve. This works if I do not specify an initial condition (but it is not interesting, giving the trivial solution u (x, y, t) = 0). I tried to specify random initial conditions, but I get these mistakes

Here is my code

```
eps = 0.1
g1 = 1
random = table[{x, y, RandomReal[]}, {x, 0, 2 [Pi], two [Pi]/ 10}, {y,
0, 2 [Pi], two [Pi]/ 10}];
random[[All, -1, -1]]= random[[All, 1, -1]];
random[[-1, All, -1]]= random[[1, All, -1]];
iniIF = Interpolation[Flatten[random, 1]];
ini[x_, y_] : = 1 + iniIF[x, y]
sols = NDSolve[{D[u[x, y, t], t]== (1 + eps) * u[x, y, t] +
two ([Psi][x, y, t] + [Phi][x, y, t]) +
Laplacian[[[[[Psi][x, y, t], {x, y}]+
Laplacian[[[[[Phi][x, y, t], {x, y}]+ g1 * u[x, y, t]^ 2 -
you[x, y, t]^ 3,
[Phi][x, y, t] == D[u, {y, 2}],
[Psi][x, y, t] == D[u, {x, 2}],
you[x, y, 0] == ini[x, y],
PeriodicBoundaryCondition[or[or[u[u[x, y, t], x == 2 [Pi],
Function[xx-2[xx-2[xx-2[xx-2[Pi]]],
PeriodicBoundaryCondition[or[or[u[u[x, y, t], and == 2 [Pi],
Function[yy-2[yy-2[yy-2[yy-2[Pi]]],
{or, [Psi], [Phi]}
{t, 0, 100},
{x, 0, 2 [Pi]}
{y, 0, 2 [Pi]}
]
```

Why would I get "Failed to discretize the boundary condition"? How I can avoid this? Thanks in advance!