I’m new to Mathematica and I have two loops of current that are both going in the same direction, but I want to flip them so that they go in opposite directions… I can’t figure out where I’m going wrong?

```
Clear("Global`*")
Q = 1;
(CapitalNu) = 100;
(Mu)o = 1;
R0 = 5;
r = {x, y, z};
r0 = {R0 Cos((2 (Pi))/(CapitalNu) i), 0,
R0 Sin((2 (Pi))/(CapitalNu) i)};
I0 = 1;
dl = {-((2 (Pi))/(CapitalNu)) Sin((2 (Pi))/(CapitalNu) i),
0, (2 (Pi))/(CapitalNu) Cos((2 (Pi))/(CapitalNu) i)};
rp = {xp(t), yp(t), zp(t)};
v = {xp'(t), yp'(t), zp'(t)};
(CapitalDigamma) = q v(Cross)(CapitalBeta)p;
m = 1;
q = 10;
{xp, yp, zp} = NDSolveValue(
{m xp''(t) == (CapitalDigamma) ((1)), xp'(0) == .1, xp(0) == 2,
m yp''(t) == (CapitalDigamma) ((2)), yp'(0) == 0, yp(0) == 3,
m zp''(t) == (CapitalDigamma) ((3)), zp'(0) == 0, zp(0) == 0},
{xp, yp, zp}, {t, 0, 200})
z = 0;
(CapitalBeta)1 = !(
*UnderoverscriptBox(((Sum)), (i = 0), ((CapitalNu) - 1)) (
*FractionBox((( )(((Mu)o)( )(I0)( ))), ((4)(
)((Pi))( ))) {
*FractionBox((((dl(Cross)((r - r0))))((()(1)()))),
SuperscriptBox((Norm(r - r0)), (3))),
*FractionBox((((dl(Cross)((r - r0))))((()(2)()))),
SuperscriptBox((Norm(r - r0)), (3)))}));
VectorPlot((CapitalBeta)1, {x, -10, 10}, {y, -10, 10},
VectorPoints -> 24, StreamPoints -> Medium,
StreamColorFunction -> None)
```

This gives me if the currents are flowing the same way. I know that it works, but every time I mess with the VectorPlot it doesn’t look how it’s supposed to with the magnetic field lines of one of the two loops flowing in the opposite direction.