I have a laptop that I like to watch youtube on while doing other things on my large monitor, but I noticed that when using the theater mode, a significant area of the video is covered by the search bar. On the big monitor it works fine, but I want to use the small one so that I have the big screen free. Is there any way to fix this? Ideally I’d prefer not to use fullscreen because I personally despise it.
Tag: covered
gt.geometric topology – Is there an orientable prime manifold covered by a nonprime manifold?
A manifold is called prime if whenever it is homeomorphic to a connected sum, one of the two factors is homeomorphic to a sphere.
Is there an example of a finite covering $pi : N to M$ of closed orientable manifolds where $M$ is prime and $N$ is not?
There are no examples in dimensions two or three. If one is willing to forgo the orientability requirement, then there are examples in dimension three. In this paper, Row constructs infinitely many topologically distinct, irreducible (and hence prime), closed 3manifolds with the property that none of their orientable covering spaces are prime.
There are examples where $N$ is prime and $M$ is not, such as the double covering $pi : S^1times S^2 to mathbb{RP}^3#mathbb{RP}^3$.
integration testing – Hypothetically if every scenario were covered by an endtoend tests, would unit tests still have any value?
Note: I’m asking about the strategy behind unit / integration / endtoend tests, not about classifying tests as one or the other.
More so in the past than present, it was expensive to write and run endtoend tests for every possible scenario. Now though, for example with the increased use of test fixtures / emulators, or even lower latency / higher query limits to APIs, it’s more feasible. But of course there’s always gonna be human error. We can never be sure we thought of every scenario.
Still I’m asking anyway, hypothetically, given an oracle that tells us every possible scenario, or to put it another way, discounting scenarios other than exactly the ones with endtoend tests, how might unit tests still be valuable?
What I’m wondering is if, unitintegration tests are kind of an “alternate approach” to thinking about tests, and that’s the advantage of writing them even when aiming for “100%” endtoend coverage: because they might catch a scenario missed by human error. But eliminate human error in thinking up scenarios, and what do they do?
Some ideas I can come up with (but I’m hoping for even stronger answers!)
 They encourage a useful coding methodology, e.g. TDD.
 On a breaking dependency (or dependent API) change, they reveal precisely where.
plotting – Line is covered by PlotMarkers in ListLinePlot
Suppose I plot the data and fitting line with black point and red line
imgPlotMarkers00 =
ListLinePlot[{Range[60] + RandomReal[{1, 1}/2, 60], Range[60]},
PlotMarkers > {Automatic, None}, PlotStyle > {Black, Red},
Joined > {False, True}]
However, I found in the output figure
the black points cover up the red line. How could I move the red line to the top layer of figure? Is their a option for this?
This is a simple example. In real case I have more than one datafit line pairs to plot and their legends to placed.
google search console – No discovered URLs and index covered button is disabled
I am using Rank Math as an SEO plugin
As per there recommendations as well as google recommendations, I should only add the index XML file
But I got discovered URLs= 0 and index coverage button is disabled
PS: the site map index has been added 1 month ago!
dnd 5e: How fast would a tensioner floating disc descend if you pulled it over a hole covered by a board and then removed the board so that the drive would fall off?
It is unclear, because the rules as written (RAW) do not address this.
In this situation, a Floating tensioner disc it floats on a surface, and the surface suddenly becomes a hole. Unfortunately, the rules do not provide guidance on what exactly happens next, as the disc is not expected to be above a hole more than 10 feet deep.
The mechanics of the spell suggests that it was not intended for this scenario, as it normally "floats 3 feet above the ground" and "can move across uneven terrain, up or down stairs, slopes, and the like, but cannot cross a change of elevation 10 feet or more. "
The spell description does not specify the speed of how fast the disc moves, either horizontally or vertically. The disc itself is a "horizontal force plane", which may or may not mean that the plane is fixed in place.
So there are several possible outcomes, depending on the interpretation:

The disk is not stationary and would therefore fall off like any other object affected by gravity. It falls until it floats 3 feet on a surface, or exceeds the maximum distance of the caster.

The disc is affected by gravity, but "cannot cross an elevation change of 10 feet or more." If the hole is more than 10 feet deep, the disc remains in place. Otherwise, the disc falls off, as described above.

The disc is a magical force and therefore gravity does not apply, so it remains floating in place.
Finally, the DM would need to decide what happens.
gn. general topology: continuous functions covered in connected $ T_2 $ spaces
Yes $ X $ is a topological space, we leave $ C (X) $ be the collection of continuous functions $ f: X a X $. We say that $ f, g in C (X) $ get together Yes there are $ x in X $ with $ f (x) = g (x) $. We say that $ D subseteq C (X) $ is a cover for $ C (X) $ yes for every $ f in C (X) $ There is $ g in D $ such that $ f $ Y $ g $ get together.
by $ C ( mathbb {R}) $A boring example of a cover is the collection of all the constant functions. A more interesting example is the following accounting cover: for $ k in mathbb {Z} $ leave $ f_k $ be defined by $ x maps to x + k $ for all $ x in mathbb {R} $. Leave $ c_0 $ be the constant $ 0 $ function. Then $$ {f_k: k in mathbb {Z} } cup {c_0 } $$ is a cover for $ C ( mathbb {R}) $.
This motivates the following question: if $ kappa $ he is an infinite cardinal and $ X $ is a connected $ T_2 $space with $  X  = 2 ^ { kappa} $, does $ C (X) $ have a cardinality cover $ kappa $?
triangles: find the distance covered by a corner of the plate in a revolution around the fixed plate.
An equilateral triangular plate on the "a" side is rolling without sliding on the periphery of another identical fixed equilateral triangular plate as shown.
Find the distance covered by a corner of the plate in a revolution around the fixed plate.
I could have an approximate idea of the path, but I cannot express it mathematically since I cannot find a point that is at a fixed distance during the revolution.
Can anyone suggest a way? Any help would be appreciated.
Am I covered to drive my parents' car while visiting?
I will visit my parents in Ohio and plan to drive their car during the visit. Am I covered by your insurance to drive your car? If not, how can I get coverage for this? I have a Dutch driver's license.
What is the expectation of the number of times a cycle is completely covered?
Consider a loop with a length of 1, then randomly select a continuous part in this loop with a length of 0.5 and cover it. Repeat this process for k times until the loop is completely covered. Find the mathematical expectation of k.
My personal thoughts are as follows.
I have personally considered the question for quite some time. I tried to disagree the question considering the possibility that the cycle is completely covered with 1,2,3 times of coverage, thinking of adding them to obtain the expectation of k later. When k = 1 and k = 2, obviously the probability is 0, when k = 3 the possibility can be shown by an image. Take the starting point of the first covered line segment as the reference point and, respectively, take the second and third covered line segments as x and y in a coordinate plane. We can trace the image as shown below.
As we create all possibilities, we can have this image. The shaded area is expressed when x lands at these specific points, where y should be to meet the requirements. When calculating the area of the shadow, we can conclude that when k = 3, the probability that the loop is completely covered is 0.25
But when I started with the condition of k = 4, it implies a larger plot dimension, which is much more difficult, and I became unable to think clearly about that problem. Can anyone provide a new perspective on this problem? Or is there an elegant solution?