# plotting – 3D plot of Intersection of sphere with plane (basic)

We use the implicit exprssion of plane. The normal of plane is `Cross(b-a,c-a)`

``````({x, y, z} - a).Cross(b - a, c - a)==0
``````

And we also use the implicit expression of sphere,here `{5,0,0}` is the sphere center and `10` is radius.

``````Norm({x, y, z} - {5, 0, 0}) - 10==0
``````

`Norm({x, y, z} - {5, 0, 0}) - 10` as `MeshFunction`

``````x = InfiniteLine({{0, 0, 0}, {1, 0, 0}});
y = InfiniteLine({{0, 0, 0}, {0, 1, 0}});
z = InfiniteLine({{0, 0, 0}, {0, 0, 1}});
plane = InfinitePlane({{1/2, 0, 0}, {1/2, 1, 0}, {1/2, 0, 1}});

sphere = Sphere({5, 0, 0}, 10);
sphereOrigin = Point({5, 0, 0});

fig = Graphics3D({{Thick, x}, {Thick, y}, {Thick, z}, {Opacity(0.15),
plane}, {Opacity(0.15), sphere}, {PointSize(Large), Red,
sphereOrigin}}, Boxed -> False);

{a, b, c} = {{1/2, 0, 0}, {1/2, 1, 0}, {1/2, 0, 1}};
circle3 =
ContourPlot3D(({x, y, z} - a).Cross(b - a, c - a) == 0, {x, -15,
15}, {y, -15, 15}, {z, -15, 15},
MeshFunctions ->
Function({x, y, z}, Norm({x, y, z} - {5, 0, 0}) - 10),
Mesh -> {{0}}, MeshStyle -> {Thick,Red}, ContourStyle -> None,
BoundaryStyle -> None);
Show(fig, circle3)
``````