plot – Counting from a list of polynomials

I have the following list of rational functions:

l = {(1.92593 x + 156.713 x ^ 2 + 984.928 x ^ 3 + 2835.89 x ^ 4 + 4790.17 x ^ 5 +
6312.74 x ^ 6 + 6361.5 x ^ 7 + 4893.32 x ^ 8 + 2894.32 x ^ 9 +
1291.06 x ^ 10 + 408.032 x ^ 11 + 92.1898 x ^ 12 + 16.5306 x ^ 13 +
2.35827 x ^ 14) / (x + 140 x ^ 2 + 1006 x ^ 3 + 3127 x ^ 4 + 5556 x ^ 5 +
7697 x ^ 6 + 8277 x ^ 7 + 6776 x ^ 8 + 4316 x ^ 9 + 2079 x ^ 10 +
715 x ^ 11 + 191 x ^ 12 + 34 x ^ 13 + 4 x ^ 14), (0.962963 x +
153.004 x ^ 2 + 1011.72 x ^ 3 + 2964.87 x ^ 4 + 4935.08 x ^ 5 +
6585.44 x ^ 6 + 6458.25 x ^ 7 + 4863.74 x ^ 8 + 2672.89 x ^ 9 +
1103.88 x ^ 10 + 311,636 x ^ 11 + 69.3013 x ^ 12 + 10.4081 x ^ 13 +
1.17914 x ^ 14) / (x + 140 x ^ 2 + 1006 x ^ 3 + 3127 x ^ 4 + 5556 x ^ 5 +
7697 x ^ 6 + 8277 x ^ 7 + 6776 x ^ 8 + 4316 x ^ 9 + 2079 x ^ 10 +
715 x ^ 11 + 191 x ^ 12 + 34 x ^ 13 + 4 x ^ 14), (3.85185 x +
151.15 x ^ 2 + 1008.14 x ^ 3 + 2935.63 x ^ 4 + 4950.81 x ^ 5 +
6367.76 x ^ 6 + 6316.97 x ^ 7 + 4809.03 x ^ 8 + 2847.33 x ^ 9 +
1204.67 x ^ 10 + 389.545 x ^ 11 + 90.9182 x ^ 12 + 12.8571 x ^ 13 +
1.76871 x ^ 14) / (x + 140 x ^ 2 + 1006 x ^ 3 + 3127 x ^ 4 + 5556 x ^ 5 +
7697 x ^ 6 + 8277 x ^ 7 + 6776 x ^ 8 + 4316 x ^ 9 + 2079 x ^ 10 +
715 x ^ 11 + 191 x ^ 12 + 34 x ^ 13 + 4 x ^ 14), (0.962963 x +
153.004 x ^ 2 + 1192.99 x ^ 3 + 3370.73 x ^ 4 + 5298.59 x ^ 5 +
6738.54 x ^ 6 + 6391.45 x ^ 7 + 4497.74 x ^ 8 + 2426.53 x ^ 9 +
924.928 x ^ 10 + 264.098 x ^ 11 + 45.1412 x ^ 12 + 6.12244 x ^ 13 +
1.17914 x ^ 14) / (x + 140 x ^ 2 + 1006 x ^ 3 + 3127 x ^ 4 + 5556 x ^ 5 +
7697 x ^ 6 + 8277 x ^ 7 + 6776 x ^ 8 + 4316 x ^ 9 + 2079 x ^ 10 +
715 x ^ 11 + 191 x ^ 12 + 34 x ^ 13 + 4 x ^ 14), (1.92593 x +
142.804 x ^ 2 + 957.246 x ^ 3 + 2757.64 x ^ 4 + 4703.23 x ^ 5 +
6194.73 x ^ 6 + 6419.86 x ^ 7 + 4933.98 x ^ 8 + 2976.2 x ^ 9 +
1339.05 x ^ 10 + 437.082 x ^ 11 + 109.356 x ^ 12 + 18.9796 x ^ 13 +
1.76871 x ^ 14) / (x + 140 x ^ 2 + 1006 x ^ 3 + 3127 x ^ 4 + 5556 x ^ 5 +
7697 x ^ 6 + 8277 x ^ 7 + 6776 x ^ 8 + 4316 x ^ 9 + 2079 x ^ 10 +
715 x ^ 11 + 191 x ^ 12 + 34 x ^ 13 + 4 x ^ 14)}

I would trace them between 0 <x <1 using:

Plot[{1, l[[1 ;; 5]]}, {x, 0, 1}]

what it would give:

enter the description of the image here

Now I want to count the number of polynomials that are above line 1 at different intervals, for example, there are 5 of them (all) that are above 1 between 0 <x <0.2, then there are 3 of them on top of the line to 0.2 <x <0.4
and so. Surely I drew them to see them, but I guess there should be a way to count the lines that are above 1 in each interval, simply by using the list l