# Optimization of problems

I have the following function

``````I[θ_, ϕ_, t_] ;  T
(1 / (2 * Log[2])  T
(Registry[2] -
(Registry[1/2 - ((1/2)*Sqrt[E^(2*I*ϕ)*
(Cos[θ]^ 2 + (Cos[0.099995*t] +
0.0100005 * That's it[0.099995*t]) ^ 2 * That[θ]^ 2)
E ^ (0.002 * t))]) / E ^ (I * φ)]*
Sqrt[E ^ (2 *
I * φ) * (Cos[θ]^ 2 + (Cos[0.099995*t] +
0.0100005 * That's it[0.099995*t]) ^ 2 * That[θ]^ 2)
E ^ (0.002 * t))]) / E ^ (I * φ) +
Registry[(1/2) * (1 -
Sqrt[Cos[Cos[Cos[Cos[θ]^ 2 + (Cos[0.099995*t] +
0.0100005 * That's it[0.099995*t]) ^ 2 * That[θ]^ 2)
E ^ (0.002 * t)])]* (- 1 +
Sqrt[Cos[Cos[Cos[Cos[θ]^ 2 + (Cos[0.0 .099995*t] +
0.0100005 * That's it[0.099995*t]) ^ 2 * That[θ]^ 2)
E ^ (0.002 * t)]) -
Registry[(1/2) * (1 +
Sqrt[Cos[Cos[Cos[Cos[θ]^ 2 + (Cos[0.099995*t] +
0.0100005 * That's it[0.099995*t]) ^ 2 * That[θ]^ 2)
E ^ (0.002 * t)])]* (1 +
Sqrt[Cos[Cos[Cos[Cos[θ]^ 2 + (Cos[0.099995*t] +
0.0100005 * That's it[0.099995*t]) ^ 2 * That[θ]^ 2)
E ^ (0.002 * t)]) +
Registry[(1/2) * (1 +
Sqrt[E ^ (2 *
I * φ) * (Cos[θ]^ 2 + (Cos[0.099995*t] +
0.0100005 * That's it[0.099995*t]) ^ 2 * That[θ]^ 2)
E ^ (0.002 * t))]/ E ^ (I * φ))]* (1 +
Sqrt[E ^ (2 *
I * φ) * (Cos[θ]^ 2 + (Cos[0.099995*t] +
0.0100005 * That's it[0.099995*t]) ^ 2 * That[θ]^ 2)
E ^ (0.002 * t))]/ E ^ (I *)));
``````

I want to maximize on  Y more fresh $$0 with$$ Y $$0 with 2 pi$$. How can this be done?