nt.number theory – Number of solutions for some quadratic congruences

Suppose $ p $ Y $ q $ they are cousins ​​and $ p neq q $ Y $ | x |, | and | <p <q <2p $ So, how many solutions can we expect congruences?
$$ x ^ 2y ^ 2-ry ^ 2 equiv to bmod p $$
$$ x ^ 2y ^ 2-r & # 39; x ^ 2 equiv b bmod q $$ where $ r, r & # 39 ;, a, b in mathbb Z backslash {0 } $ they come with $ mathsf {GCD} (rr & # 39; ab, pq) = 1 $?