I am trying to plot the solution of this nonlinear differential equation where $xi$ is a constant. The method that I am using y `ParametricNDSolveValue`

, but before it end the kernel dies.

I have tried with many different initial conditions, but does not end.

$-frac{6 (1-6 xi ) xi varphi (t) varphi ‘(t)^2}{36 xi ^2 varphi (t)^2-6 xi varphi (t)^2+1}+frac{3 varphi ‘(t) left(sqrt{36 xi ^2 varphi (t)^2 varphi ‘(t)^2+left(1-6 xi varphi (t)^2right) left(varphi ‘(t)^2+2 varphi (t)^4right)}+6 xi varphi (t) varphi ‘(t)right)}{1-6 xi varphi (t)^2}+frac{4 varphi (t)^3}{36 xi ^2 varphi (t)^2-6 xi varphi (t)^2+1}+varphi ”(t)=0 $

```
Element({t, (Xi)}, Reals)
Element({N, n}, Integers)
SetAttributes((Xi), Constant)
B = (CurlyPhi)(t)^M
dB = D(B, {(CurlyPhi)(t), 1})
ddB = D(B, {(CurlyPhi)(t), 2})
V = (CurlyPhi)(t)^n
dV = D(V, {(CurlyPhi)(t), 1})
ddV = D(V,{(CurlyPhi)(t), 2})
dPhi = D((CurlyPhi)(t), {t, 1})
ddPhi = D((CurlyPhi)(t), {t, 2})
H1 = (3 (Xi) dB dPhi + Sqrt( 9 (Xi)^2 dB^2 dPhi^2 + ( 1 - 6 (Xi) B ) ( dPhi^2 + 2 V ) ))/(1 - 6 (Xi) B)
rollup1 = ddPhi + 3 H1 dPhi - ( (3 (Xi) dB ( 1 - 3 (Xi) ddB ) )/(1 - 6 (Xi) B + 9 (Xi)^2 dB^2) ) dPhi^2 + (dV + 6 (Xi) (2 V dB - dV B))/( 1 - 6 (Xi) B + 9 (Xi)^2 dB^2) == 0
M=2
N=4
solrollup1 = ParametricNDSolveValue({rollup1, (CurlyPhi)(0) == (Xi), (CurlyPhi)'(0) == (Xi)}, (CurlyPhi)(t), {t, 0, 100}, {(Xi)})
plotsolrollup1 = Plot(Evaluate(Table(solrollup1((Xi))(t), {(Xi), -10, 10, 0.01})), {t, 0, 100}, PlotRange -> All)
Export("rollup1.jpeg", plotsolrollup1)
```

In case it is an impossible way to solve this differential equation, what method could I used to solve it?