code revision: the most efficient algorithm to find all possible pairs of integers that add up to a given integer

I wrote a module in Mathematica that finds all the possible pairs of integers of a specific list of integers (which can be negative, zero or positive) that add up to a specified integer m.

The only limiting assumption that this algorithm has is that the user only wants to obtain the set of all the unique sums that add m.

Is there a faster algorithm to do this? I have read that making a Hash table is of complexity O (n). Is it my time code O (n)? If it is time O (n), is it a Hash table, or is it something else? If it is not the time O (n), how efficient is it?

SearchTwoIntegersWose SumIsM[listOfIntegers_,m_]: = Module[
{
i,distanceFrom1ToMin,negativeFactor,distance,start,finish,(*Integers*)
sortedList,numberLine,temp,finalList,(*Lists*)
execute(*Boolean*)
},
(*There are possible inputted values of m with a give integer set input which
make the execution of this algorithm unnecessary.*)
execute=True;

sortedList=Sort[DeleteDuplicates[listOfIntegers]];

(* Create a continuous list of integers whose smallest and largest entries are equal
to the smallest and largest entries in the list of entered integers, respectively. *)
(* Let this list be called numberline. *)

(* ::::: The construction of the number line BEGINS :::: *)

(* If listOfIntegers only contains negative integers and possibly zero, *)
Yes[(sortedList[[1]]<0) && (orderedList[[Length[sortedList]]]<=0),

    (*If m is positive, there is no reason to proceed.*)

    If[m>0, execute = false,
(* Yes m [Equal] 0, then, if two or more zeros are in listOfIntegers, they should be sent to the user.
Therefore, we write m> 0 instead of m [GreaterEqual]0 in the conditional above. *)

(* Otherwise, treat it as if all integers were positive with some considerations. *)
Negative factor = -1;
sortedList = Reverse[-sortedList];
Yes[sortedList[[1]]! = 0,
numberLine = Rank[orderedList[sortedList[ordenadaLista[sortedList[[Length[sortedList]]]],
numberLine = Join[{0}range[orderedList[{0}Range[sortedList[{0}rango[ordenadaLista[{0}Range[sortedList[[Length[sortedList]]]]]]],
Negative factor = 1;

(* If not, if the set of integers contains negative and positive integers, *)
Yes[(sortedList[[1]]<0)&&(sortedList[[Length[sortedList]]]>0),
numberLine =
Join

The
-Distance[ABS[Abs[Abdominales[Abs[sortedList[[1]]], 0, -1](* subset of negative integers *)
,
Distance[orderedList[sortedList[ordenadaLista[sortedList[[Length[sortedList]]]](* subset of positive integers *)
], (* Otherwise, if the set of integers contains only integers, *)
Yes[(sortedList[[1]]== 0) && (orderedList[[Length[sortedList]]]> 0),

(* If the list of integers is positive and m is negative,
there is no reason to proceed. *)
Yes[m <0, execute = False, (* Otherwise, *)
numberLine =
Join

The
{0 zero *)
,
Distance[orderedList[sortedList[ordenadaLista[sortedList[[Length[sortedList]]]](* positive integers *)
]], (* Otherwise, if the set of integers contains only the natural numbers. *)

(* If the integer list is positive and m is negative or zero,
there is no reason to proceed. *)
Yes[m<=0,execute=False,numberLine=Range[Max[sortedList](* positive integers *)]]]]];

(* ::::: Construction of the numeric line ENDS :::: *)
(*Print[numberLine]; *)


Yes[execute==False,finalList=$Failed,
(*Mark all numbers which are in numberline but are not in listOfIntegers with a period.

Sort[] You will still order this mixed precision list of numbers in ascending order. *)
temp = Sort[Join[Complement[numberLine,sortedList]// N, classified list]];

(* The main idea of ​​the algorithm is to find the point on the number line to start selecting two numbers
combinations that add to m. Obviously, m will be used when that moment arrives.

Once that point is selected, the integers are symmetrically equally distant from each other
on both sides of this point (number) on the number line there are candidates that add m.

To avoid getting "out of bounds" from the number line (either by trying to select a smaller value
that the minimum value of the number line or try to select a value greater than the maximum
value of the number line, the following is the maximum distance that we can use to obtain ALL possible
two integer combinations that add m but of which also prevents us from going "out of bounds".)
*)


(* If the number line we are about to create has a constant minimum value of 1
then it would not be compensated as it is in general.
The following takes this "displacement" into account. *)
distanceFrom1ToMin = Abs[1-Min[sortedList]];


distance =
Min[
    {
        distanceFrom1ToMin+Floor[negativeFactor*m/2]
    ,
Length[temp]- (distanceFrom1ToMin + Ceiling[negativeFactor*m/2]-one)
}
];

start = distanceFrom1ToMin + Floor[negativeFactor*m/2]+1;
finish = distanceFrom1ToMin + Ceiling[negativeFactor*m/2]-one;

(* With the established limit distance, we are ready to start selecting numbers from the number line. *)
finalList = {};
i = 1;
While[i<=distance,
    finalList=Append[finalList,{temp[[start-i]],temperature[[finish+i]]}];
i ++
];

(* It turns out that for even m the first selected integer combination considered is {m / 2, m / 2}. *)
Yes[(Mod[m,2]== 0) && (MemberQ[finalList,{negativeFactor*m/2,negativeFactor*m/2}]== True),
(* If there are not two m / 2 in listOfIntegers, we omit this selected combination. *)
Yes[Length[Flatten[Position[listOfIntegers,negativeFactor*m/2]]]<2,
finalList = Delete[finalListPosition[finalListPosition[finalListPosición[finalListPosition[finalList,{negativeFactor*m/2,negativeFactor*m/2}][[1]][[1]]]]];

(* We select all combinations of possible numbers on the number line.) However, unless listOfIntegers
are all consecutive integers, we must omit any combination of numbers selected in which
The numbers have a "." to the right of it. *)
finalList = negativeFactor * Sort[Select[finalList,Precision[#]==[Infinity]&]]];
final list
]

I did the following tests with the code and got these results. (The first number in the second time took to do the calculation.But, of course, you can copy the code and do the tests yourself). I skipped most of the results of the last test because it made my publication too big, but you will see that you did the calculation in 0.209207 seconds.

As the comments in my algorithm (and the algorithm itself suggests), I divided the number line into negative integers, zero and positive integers. Therefore, I wrote my tests to address all possible situations.


For the positive whole set (not zero).

With m positive, such that m is greater than what any combination of two numbers in listOfIntegers could add.

m = 100; listOfIntegers = RandomSample[Range[20], 6]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{19, 11, 1, 4, 13, 17}

{0.0371008, {}}

With odd positive m.

m = 215; listOfIntegers = RandomSample[Range[266]190]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{119, 175, 7, 123, 42, 173, 15, 56, 233, 41, 9, 156, 130, 196, 183, 
65, 102, 109, 177, 161, 230, 105, 91, 103, 146, 47, 234, 133, 88, 68,
169, 197, 46, 198, 108, 263, 205, 129, 4, 157, 245, 210, 203, 78,
172, 128, 138, 61, 262, 159, 148, 45, 225, 239, 72, 74, 151, 34, 36,
5, 106, 77, 223, 116, 8, 2, 11, 54, 124, 87, 221, 213, 171, 93, 53,
19, 40, 30, 95, 215, 39, 140, 49, 158, 94, 38, 28, 247, 84, 75, 257,
33, 163, 132, 69, 211, 193, 222, 114, 240, 32, 149, 167, 135, 107,
115, 101, 100, 166, 144, 251, 253, 224, 154, 48, 44, 26, 181, 259,
81, 6, 70, 122, 255, 189, 235, 112, 110, 174, 85, 147, 117, 18, 209,
66, 121, 155, 206, 207, 212, 98, 113, 254, 214, 178, 111, 227, 165,
204, 231, 194, 20, 176, 150, 162, 241, 243, 199, 90, 55, 127, 191,
12, 185, 242, 125, 265, 25, 1, 250, 201, 168, 76, 134, 266, 82, 10,
92, 143, 217, 126, 218, 182, 220, 153, 164, 216, 238, 67, 14}

{0.136695, {{1, 214}, {2, 213}, {4, 211}, {5, 210}, {6, 209}, {8,
207}, {9, 206}, {10, 205}, {11, 204}, {12, 203}, {14, 201}, {18,
197}, {19, 196}, {26, 189}, {30, 185}, {32, 183}, {33, 182}, {34,
181}, {38, 177}, {39, 176}, {40, 175}, {41, 174}, {42, 173}, {44,
171}, {46, 169}, {47, 168}, {48, 167}, {49, 166}, {53, 162}, {54,
161}, {56, 159}, {61, 154}, {65, 150}, {66, 149}, {67, 148}, {68,
147}, {69, 146}, {72, 143}, {75, 140}, {77, 138}, {81, 134}, {82,
133}, {85, 130}, {87, 128}, {88, 127}, {90, 125}, {91, 124}, {92,
123}, {93, 122}, {94, 121}, {98, 117}, {100, 115}, {101,
114}, {102, 113}, {103, 112}, {105, 110}, {106, 109}, {107, 108}}}

With positive even m.

m = 22; listOfIntegers = Rank[20]
Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

{0.00998522, {{2, 20}, {3, 19}, {4, 18}, {5, 17}, {6, 16}, {7,
15}, {8, 14}, {9, 13}, {10, 12}}}

With a positive stop m such that listOfIntegers contains two of m / 2.

m = 22; listOfIntegers = Append[Range[20], eleven]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 11}

{0.00037181, {{2, 20}, {3, 19}, {4, 18}, {5, 17}, {6, 16}, {7,
15}, {8, 14}, {9, 13}, {10, 12}, {11, 11}}}

With a positive result, so that listOfIntegers contains a m / 2.

m = 22; listOfIntegers = Rank[20]
Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

{0.000267311, {{2, 20}, {3, 19}, {4, 18}, {5, 17}, {6, 16}, {7,
15}, {8, 14}, {9, 13}, {10, 12}}}

With any negative m.

m = -6; listOfIntegers = Rank[26]
Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 21, 22, 23, 24, 25, 26}

{0.000108231, $ Failed}

For the positive whole set (including 0).

With an m.

m = 88; listOfIntegers = RandomSample[Join[{0}, Range[122]], 39]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{121, 69, 120, 56, 36, 55, 17, 114, 7, 59, 32, 4, 20, 79, 92, 62, 50, 
89, 13, 70, 113, 75, 76, 80, 108, 53, 83, 95, 0, 85, 86, 77, 10, 54,
48, 66, 104, 100, 35}

{0.000505232, {{13, 75}, {32, 56}, {35, 53}}}

With a strange m.

m = 57; listOfIntegers = RandomSample[Join[{0}, Range[82]], 52]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{62, 18, 26, 0, 67, 34, 55, 52, 35, 78, 10, 68, 46, 44, 38, 23, 77, 
76, 58, 51, 75, 63, 53, 42, 54, 27, 56, 71, 12, 17, 2, 37, 31, 72, 
49, 50, 32, 16, 47, 19, 4, 20, 81, 25, 61, 14, 80, 82, 59, 33, 70, 39}

{0.000372743, {{2, 55}, {4, 53}, {10, 47}, {18, 39}, {19, 38}, {20,
37}, {23, 34}, {25, 32}, {26, 31}}}

For the negative whole set (including 0).

With a positive m.

m = 4; listOfIntegers = RandomSample[Join[{0}, -Range[22, 1, -1]], 19]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{-2, -16, -15, -9, -5, -12, -8, -22, -7, -21, -13, -18, -4, -11, -10, 
-19, -6, -17, -20}

{0.000105898, $ Failed}

With a negative odd m.

m = -17; listOfIntegers =
Aleatory sample[Join[{0}, -Range[22, 1, -1]], 19]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{-5, -1, -10, -13, -15, -19, -2, 0, -7, -18, -3, -21, -8, -11, -12, 
-22, -17, -16, -20}

{0.000640987, {{0, -17}, {-1, -16}, {-2, -15}, {-5, -12}, {-7, -10}}}

With a negative even m.

m = -26; listOfIntegers =
Aleatory sample[Join[{0}, -Range[22, 1, -1]], 19]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{-19, -16, -11, -14, -17, -13, -1, -9, -15, -20, -18, -4, -21, 0, -8, 
-6, -10, -7, -3}

{0.000329357, {{-6, -20}, {-7, -19}, {-8, -18}, {-9, -17}, {-10, 
-16}, {-11, -15}}}

For the negative whole set (excluding 0).

With a positive m.

m = 4; listOfIntegers = RandomSample[-Range[22, 1, -1], 19]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{-20, -7, -16, -21, -11, -13, -5, -2, -6, -19, -1, -12, -18, -14, 
-15, -9, -4, -17, -22}

{0.000102633, $ Failed}

With a negative odd m.

m = -27; listOfIntegers = RandomSample[-Range[22, 1, -1], 19]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{-18, -17, -22, -13, -1, -11, -19, -8, -16, -6, -21, -12, -20, -3, 
-4, -9, -7, -14, -15}

{0.000242586, {{-6, -21}, {-7, -20}, {-8, -19}, {-9, -18}, {-11, 
-16}, {-12, -15}, {-13, -14}}}

With a negative even m.

m = -26; listOfIntegers = RandomSample[-Range[22, 1, -1], 19]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{-19, -10, -20, -9, -21, -14, -5, -1, -17, -4, -18, -22, -8, -6, -13,
-3, -2, -12, -15}

{0.000286438, {{-4, -22}, {-5, -21}, {-6, -20}, {-8, -18}, {-9, -17}, 
{-12, -14}}}

For the entire whole set.

With an odd positive m.

m = 15; listOfIntegers =
Aleatory sample[Join[-Range[52, 1, -1], {0}, rank[52]], 35]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{-30, 19, 42, 38, -25, 6, 48, 5, -8, -27, -11, -47, -37, -12, -3, 
-34, 50, 11, 10, 18, 7, -15, 51, -22, -26, -2, 33, -35, 34, 39, 44,
-51, -33, -16, -23}

{0.000468378, {{-35, 50}, {-33, 48}, {-27, 42}, {-23, 38}, {-3,
18}, {5, 10}}}

With a negative odd m.

m = -7; listOfIntegers =
Aleatory sample[Join[Join[Unirse[Join[-Range[22, 1, -1], {0}, rank[22]], twenty-one]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{-1, -16, -11, 10, 17, 1, 0, -5, -22, 8, -7, 15, 21, 11, 18, 14, -4, 
7, -13, 4, -9}

{0.000310697, {{-22, 15}, {-11, 4}, {-7, 0}}}

With a positive even m.

m = 36; listOfIntegers =
Aleatory sample[Join[-Range[30, 1, -1], {0}, rank[30]], twenty]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{25, -9, -8, 8, 5, -10, -24, 13, 9, -16, -23, -14, -22, -29, 26, 12, 
19, 16, -30, 18}

{0.000289237, {}}

With a negative even m.

m = -34; listOfIntegers =
Aleatory sample[Join[-Range[100, 1, -1], {0}, rank[100]], fifty]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{7, 92, 91, 58, -58, 63, -95, 82, 26, 60, 16, 65, 15, 34, 29, 67, -2, 
88, 21, -72, -93, 12, 43, 18, -83, -80, -30, -6, 54, -13, -63, 39,
-55, 9, -78, 5, -16, 52, -24, -82, -18, 2, -90, 37, -60, 80, 57, -22,
-26, 72}

{0.000726359, {{-63, 29}, {-60, 26}, {-55, 21}, {-18, -16}}}

With m == 0.

m = 0; listOfIntegers =
Aleatory sample[Join[-Range[222, 1, -1], {0}, rank[222]]111]Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]Clear[m, listOfIntegers]

{-215, -8, 186, 153, 17, 83, 149, -45, -18, 14, -161, 6, 84, -41, 
-59, -130, 34, -24, -142, -95, -70, -60, -152, 90, -43, 12, -196,
-98, -193, -78, -192, 7, -30, 218, -209, -28, -125, 142, 11, 161,
-143, -135, -212, 134, 1, -177, -100, 2, 63, -180, -50, 79, -129,
-91, 126, 57, -140, -200, 38, -182, -107, -25, -46, -179, -113, 88,
148, 28, 184, -158, 190, -9, -36, -5, 169, 221, -204, -210, 44, 45,
-71, 40, 135, 119, -42, 166, 65, 59, -15, -118, 117, -47, -52, 102,
74, -19, 152, 81, 0, 170, -214, 114, -38, 210, -1, -7, -89, -173,
123, 78, -127}

{0.00179934, {{-210, 210}, {-161, 161}, {-152, 152}, {-142,
142}, {-135, 135}, {-78, 78}, {-59, 59}, {-45, 45}, {-38,
38}, {-28, 28}, {-7, 7}, {-1, 1}}}

With a large m with a large list of members.

m = 5311; listOfIntegers =
Aleatory sample[Join[-Range[9999, 1, -1], {0}, rank[9999]], 8888];
Absolute Time[FindTwoIntegersWhoseSumIsM[listOfIntegers, m]]{0.209207, {{-4680, 9991}, {-4676, 9987}, {-4664, 9975}, {-4650,
9961}, {-4646, 9957}, {-4645, 9956}, {-4636, 9947}, {-4634,
9945}, {-4633, 9944}, {-4630, 9941}, {-4600, 9911}, {-4599,
9910}, {-4594, 9905}, {-4587, 9898}, {-4574, 9885}, {-4573,
9884}, {-4572, 9883}, {-4566, 9877}, {-4562, 9873}, {-4556,
9867}, {-4549, 9860}, {-4538, 9849}, {-4529, 9840}, {-4517,
9828}, {-4514, 9825}, {-4511, 9822}, {-4504, 9815}, {-4502,
9813}, {-4499, 9810}, {-4497, 9808}, {-4490, 9801}, {-4486,
9797}, {-4485, 9796}, {-4483, 9794}, {-4481, 9792}, {-4478,
9789}, {-4475, 9786}, {-4464, 9775}, {-4463, 9774}, {-4458,
9769}, {-4452, 9763}, {-4443, 9754}, {-4431, 9742}, {-4428,
9739}, {-4427, 9738}, {-4420, 9731}, {-4417, 9728}, {-4407,
9718}, {-4405, 9716}, {-4397, 9708}, {-4394, 9705}, {-4393,
9704}, {-4380, 9691}, {-4377, 9688}, {-4369, 9680}, {-4359,
9670}, {-4356, 9667}, {-4354, 9665}, {-4350, 9661}, {-4349,
9660}, {-4346, 9657}, {-4337, 9648}, {-4332, 9643}, {-4331,
9642}, {-4325, 9636}, {-4323, 9634}, {-4314, 9625}, {-4305,
9616}, {-4293, 9604}, {-4283, 9594}, {-4266, 9577}, {-4246,
9557}, {-4241, 9552}, {-4235, 9546}, {-4231, 9542}, {-4227,
9538}, {-4224, 9535}, {-4222, 9533}, {-4220, 9531}, {-4211,
9522}, {-4203, 9514}, {-4202, 9513}, {-4198, 9509}, {-4196,
9507}, {-4193, 9504}, {-4190, 9501}, {-4181, 9492}, {-4176,
9487}, {-4148, 9459}, {-4138, 9449}, {-4137, 9448}, {-4136,
9447}, {-4127, 9438}, {-4125, 9436}, {-4107, 9418}, {-4086,
9397}, {-4081, 9392}, {-4079, 9390}, {-4078, 9389}, {-4065,
9376}, {-4056, 9367}, {-4041, 9352}, {-4040, 9351}, {-4038,
9349}, {-4035, 9346}, {-4030, 9341}, {-4026, 9337}, {-4020,
9331}, {-4015, 9326}, {-4014, 9325}, {-4010, 9321}, {-3991,
9302}, {-3988, 9299}, {-3984, 9295}, {-3980, 9291}, {-3978,
9289}, {-3977, 9288}, {-3976, 9287}, {-3971, 9282}, {-3970,
9281}, {-3950, 9261}, {-3946, 9257}, {-3938, 9249}, {-3932,
9243}, {-3922, 9233}, {-3920, 9231}, {-3915, 9226}, {-3910,
9221}, {-3909, 9220}, {-3908, 9219}, {-3901, 9212}, {-3900,
9211}, {-3898, 9209}, {-3887, 9198}, {-3885, 9196}, {-3877,
9188}, {-3875, 9186}, {-3869, 9180}, {-3864, 9175}, {-3859,
9170}, {-3854, 9165}, {-3853, 9164}, {-3848, 9159}, {-3839,
9150}, {-3835, 9146}, {-3826, 9137}, {-3821, 9132}, {-3812,
9123}, {-3810, 9121}, {-3807, 9118}, {-3806, 9117}, {-3799,
9110}, {-3797, 9108}, {-3789, 9100}, {-3779, 9090}, {-3777,
9088}, {-3774, 9085}, {-3773, 9084}, {-3769, 9080}, {-3767,
9078}, {-3761, 9072}, {-3751, 9062}, {-3750, 9061}, {-3749,
9060}, {-3748, 9059}, {-3742, 9053}, {-3740, 9051}, {-3731,
9042}, {-3726, 9037}, {-3717, 9028}, {-3715, 9026}, {-3714,
9025}, {-3708, 9019}, {-3704, 9015}, {-3702, 9013}, {-3687,
8998}, {-3677, 8988}, {-3661, 8972}, {-3654, 8965}, {-3653,
8964}, {-3649, 8960}, {-3641, 8952}, {-3635, 8946}, {-3622,
8933}, {-3615, 8926}, {-3610, 8921}, {-3607, 8918}, {-3601,
8912}, {-3597, 8908}, {-3592, 8903}, {-3586, 8897}, ..., {2594, 2717}, {2598, 2713}, {2599, 2712}, {2603,
2708}, {2607, 2704}, {2617, 2694}, {2619, 2692}, {2633,
2678}, {2634, 2677}, {2643, 2668}, {2644, 2667}, {2648,
2663}, {2650, 2661}}}